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FpiCast

SIMULATING EPIDEMICS
WITH EXTREME DETAIL

e Synthesizes entire populations to
understand and PREDICT disease
spread

¢ Models human behavior combined
with COMMUNITY specifics

e Accounts for differences in
infectivity resulting from viral
VARIANTS

® Provides a fine-grained preview of
potential MITIGATION strategies
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Image 2: Team member Sara Del Valle sharing the implications of
various policy choices, as modeled by EpiCast.
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Image 3: EpiCast output plotting vaccine supply against vaccine efficacy. The figure shows how
vaccine doses per week impact vaccine efficacy against a novel viral variant.
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Image 4: EpiCast output projecting the number of new infections based on when mitigation measures
are relaxed (March 1, 15, or 29).
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Image 5: EpiCast projections for cumulative cases per county per 100k. Simulation shows results if 80% of
students attended school full time.
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Product description

EpiCast is modeling software that generates a synthetic, representative population to simulate infectious
disease transmission in the United States with extreme detail and granularity. The software models
human behavior combined with community-specific information to provide a fine-grained preview of

the effect of potential mitigation strategies for decision makers.
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Government Laboratory
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1.

What does your product or service do?

You are walking through the grocery store when a stranger coughs. In late 2019, in a market on
the other side of the world, someone may have heard a similar cough. Then, in an impossibly
complex path, SARS-CoV-2 arrived in your canned goods aisle. Only one class of infectious
disease models can begin to describe the winding chain of infections that led to this moment, and
they typically run on high performance computers designed to model the billions of individual
atoms in a nuclear explosion. EpiCast and models like it harness this computing power to
represent millions of people and their unique behaviors to simulate the most likely course of a
pandemic through a population. These realistic models of pandemic and human behavior are

needed to inform decision makers as they plan mitigation scenarios.

Researchers have been deploying mathematical models to understand and predict disease spread
for decades. In early February 2021, the Centers for Disease Control and Prevention (CDC) had
received COVID-19 forecasts from 94 different models, and many were from SEIR-type models,

which use differential equations and assumed transition rates

Apart from SEIR and

projection models, statistical
categories. These models get their name from how they models provide another

to determine the relative number of people in general

means of understanding

disease spread. Statistical
(1), and removed or recovered (R), but they have since evolved  models can provide quick,

categorize individuals: susceptible (S), exposed (E), infectious

often less-detailed forecasts

that rely on learning trends
vaccination status. These types of models assume that from high quality initial data

to include even finer categories, such as age, location, and

about disease spread within a

everyone in the model has an equal chance of getting infected, )
population.

when in reality, demographics, behavior, and daily activities

(among other factors) play an enormous role in this probability. As such, these SEIR methods are
best suited for an epidemic that has already infected a large part of the population and is
spreading, and they are less effective at describing the critical stages when only small numbers of
people are affected, when an infectious disease first appears in a community, or when it is
nearing extinction. In particular, SEIR models are less effective when additional variables dictate
how a disease spreads in the population, for example if age or sexual orientation is a factor (e.g.,

HIV). For this purpose, researchers use the often far more sophisticated projection models, a



technology that has its roots as early as the 1940s but only recently reached its apogee — with

EpiCast.

EpiCast’s earliest predecessors modeled disease spread within small-scale, structured
communities in order to evaluate influenza vaccination strategies. The idea was to simulate a
synthetic population of individuals, or “agents.” Instead of relying on average behaviors,
researchers could better capture heterogeneity within a given population. Limited computing
power meant that early models could simulate communities of only 1000 to 2000 people within a
reasonable time frame. Nevertheless, these models saw widespread use over the years,
complementing traditional SEIR-type models, particularly when assessing the probability of
outbreak of an emerging disease or its successful quenching. However, since they could only
simulate a single community, questions about spatial spread or containment, for instance by

limiting travel, remained unanswered.

Researchers understood the potential of this agent-based approach and continued developing this
type of model, taking full advantage of advances in computing power. By the mid-2000s, agent-
based simulations could apply enough computing power to connect geographically-distant
communities based on tract-to-tract worker flow data, most notably in individuals’ daily
commute from home to work. Census data enabled the model to accurately represent these
regular short-range mobility patterns, while Department of Transportation data on business and
personal travel measured irregular longer-range mobility, even accounting for people on
vacation. The model could now drop vacationers into different, specified communities for
varying trip durations, simulating the contact patterns of a tourist. By the late 2000s, the model
could accurately synthesize the day-to-day interactive patterns of ~300 million individual

persons in the United States.

At this point in history, the world had not suffered a pandemic of catastrophic proportions in
almost exactly a century, when the 1918 influenza pandemic caused tens of millions of deaths
worldwide. (HIV/AIDS, which is termed a “global epidemic” rather than a pandemic by the

World Health Organization (WHO), has caused a similar number of deaths since its arrival in



1981.) Many governments were concerned about the potential spread of avian influenza, but a

worldwide pandemic seemed a remote possibility to most.

In early 2020, COVID-19 swept the globe. Governments attempted to “flatten the curve” through
business shutdowns and stay-at-home orders, but the United States was hit hard. By the end of
March, mere months after the virus first emerged in humans 7,000 miles away, the U.S. had
recorded 192,300 cases and 5,300 deaths. While this unprecedented disaster sent shockwaves
through every level of society and clouded an uncertain future, state and local governments
turned to computational and mathematical epidemiology researchers to help formulate
intervention strategies to limit the spread of the disease. Traditional forecasting models provided
a reasonable understanding of how the near future was likely to look, but local policy makers and
public health communities still struggled to understand how potential mitigations ought to be
implemented. Decision makers needed a way to measure the impact of their policy choices—
they needed better technology. EpiCast answered the call, bringing urgently needed answers to

policymakers grappling with how to adjust school and business schedules.

EpiCast is fundamentally different from forecasting models because of its unprecedented depth
of detail and the ease with which it incorporates new information and variables. Unlike
traditional forecasting models that typically require statistics on disease spread within a region,
EpiCast does not require prior data on transmission within a population to model an outbreak.
This means that EpiCast can powerfully address “what-if”” questions about hypothetical future
pandemics, or inform mitigation strategies such as how to best deploy vaccines or antiviral
drugs, implement social distancing measures, etc., during a current pandemic. Researchers need
only input key variables about the disease itself, such as its infectivity, mortality, and how it
spreads (airborne or otherwise). These data points are easily acquired once a disease has been
identified clinically, but before widespread transmission, a crucial window of time for
implementing mitigation policies. Of course, as more information becomes available, it can often

be used to improve the model’s fidelity and accuracy.



EpiCast’s key innovation is its ability to answer
specific intervention-related questions whose
answers guide policy. Forecasting models can
tell you what will happen if you maintain the
status quo, while EpiCast tells you what could
happen if you implement any number of a wide
range of mitigation strategies. A policymaker
can ask “What would happen if we reopened
schools at reduced capacity?” or “How might
different vaccine allocation strategies (i.e.,
different prioritization approaches) impact the

spread of the disease?” EpiCast allows

Example Questions EpiCast can Answer

How is social distancing affecting
transmission?

What would happen if K-8 schools
reopened?

What is the impact of different mask
compliances (0-100) across different
counties and states?

What if a new variant is 3x more
infectious?

How will local and long-distance travel
restrictions affect spread?

How will reducing restaurants to 25
percent capacity affect spread?

What if we vaccinate school teachers
after healthcare workers?

incredible detail in adjusting these variables; policymakers can even explore the implications of

opening specific buildings or industries: “What would happen if no restaurant servers wore

masks?” or “How is the virus more likely to enter a school setting: from a teacher or from a

student?” Questions like these and their detailed answers are vital for scientifically guided

mitigation strategies, and traditional forecasting models do not provide the answers.



In August 2020, EpiCast projected daily case counts in three states (TX, NY, and NM) under
four potential school reopening scenarios: (1) Business as usual (tall peaks), (2) 80 percent onsite
learning (smaller peaks), (3) 40 percent onsite learning (nearly flat), and (4) Schools closed (flat
lines). These projections highlight the impact of even slightly reduced onsite learning, and
provide a scientific basis for the policy that would go on to impact the education and safety of
millions of students. Currently, the EpiCast team is working with the New Mexico Department
of Health (NMDOH) and the U.S. Centers for Disease Control and Prevention (CDC) on school
reopening scenarios, relaxation of public health orders, vaccine distribution scenarios, and

evaluating the impact of non-pharmaceutical interventions.
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Figure 1: August 2020 projection of case counts in three states (TX, NY, and NM) under four
school reopening sceanrios.

Developers imagine a future where epidemiologists use EpiCast in a standing pandemic
prevention center, for example in an office within the CDC devoted to identifying and tracking
emerging diseases. Armed with EpiCast, the planning and preparation for the next pandemic can

begin now. As EpiCast evolves to model populations outside of the United States, researchers



will have incredible tools for projecting an outbreak before it happens and learning how best to
stop its spread. As a population-modeling tool, EpiCast’s applications extend beyond pandemic
prevention: EpiCast could be applied to understand other kinds of population behavior, such as

1n evacuation scenarios.

Compared to other models, EpiCast’s advantages are clear. EpiCast simulates disease spread at
the much finer census tract level (approximately 2,000 individuals per 65,433 census tracts),
compared to the state-level models of competitors. EpiCast can simulate a broad set of mitigation
strategies, including industry-specific closures, statewide or county-level isolation, and masking,
and a population’s varying compliance with these strategies. Its agents are fully characterized
individuals, with assigned industries and travel patterns, and potentially even assigned vacations.
EpiCast is the best tool to guide school reopenings, as it is the only model to differentiate

between high schools and elementary schools when it comes to spread.

In many ways, the United States was woefully unprepared for the COVID-19 pandemic. EpiCast,
on the other hand, was always prepared, because developers painstakingly designed it for this

precise purpose: guiding the policy that will safely reopen the country.



2. How does your technology operate?

EpiCast is a projection model, a sophisticated “agent-based” tool that draws from many
independent data sources to run a complex simulation, typically on a high-performance
computing platform. In this simulation, EpiCast in effect reproduces the real world, generating
millions of individual people (“agents’). Each agent in EpiCast’s synthetic population is
assigned a set of features such as household location, household composition and size, job
category (a North American Industry Classification System, or NAICS, code), and age. We
know people behave differently, so instead of creating an “average person” as in an SEIR-type
model, EpiCast models individual humans with varying behavior. EpiCast generates a detailed,

completely customizable, synthetic population with distinct behaviors and travel patterns.

EpiCast then simulates the individual agents moving throughout their day. Agents go to work,
attend school, visit the grocery store, speed to the hospital, or just sit at home all day, all while
EpiCast records their interactions and evaluates their exposure to disease. Policymakers want to
know what would happen if schools reopened? Researchers need only move that age group from
the couch to the classroom, and watch as the scenario plays out in the EpiCast world. The result
is a high-resolution, demographic- and locale-specific analysis far ahead of any output from

competing models.

Researchers start by inputting individual age- and context-specific contact rates based on the
disease’s infectivity, incubation period, and mortality. Next, they set a specified number of
initially infected people in the population, taking advantage of the model’s ability to project
results from any starting point. Then, EpiCast simulates 12-hour increments in its generated
world, computing the probability of each susceptible individual becoming infected. The model
accounts for the duration and closeness of interactions between pairs of individuals in different
settings, factoring in a variety of daily patterns. For example, individuals spend the nighttime at
home (unless on travel), and daytime at their school or workplace, if they belong to one (and if
they are open). When the model shows a susceptible person interacting with an infected person,
the susceptible person may become infected, based on a calculated probability. If infected, they
enter an incubation period, followed by a symptomatic or asymptomatic phase in which they are

infectious, with durations drawn from specified distributions. Infectivity rates, incubation
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distributions, and other key information are pulled from peer-reviewed literature or derived from

trusted data. The pattern repeats and the simulation continues while researchers gather insights

the disease spreads.

as

2) Each community contains a number of contact groups (households,
schools, workplaces, businesses, ...) where transmission may occur,

and where different mitigations (masks, distancing, reduced capacities
or schedules, etc.) may be adopted.

Work group

—

~—— Work location /.

Household

_.v_/

Community

3) Each susceptible individual has a probability of
becoming infected by infectious individuals in their
contact groups during each discrete 12-hour
timestep.

1) Each of the ~65,000 These probabilities may be further modified if the
U.S. census tracts (dots) infectious and/or susceptible individuals are adopting
are represented by one social distancing measures or have been

or more communities. vaccinated.

Figure 2: EpiCast uses U.S. census tracts (represented by the red dots on the map) to model
population, instead of statewide population data.

Using individual agents to model disease spread provides an extraordinary level of detail.

Researchers can evaluate how a disease will ping-pong between restaurant patrons and servers,

teachers and students, the socially distant and the not-so-socially distant, tweaking variables and

mitigation measures as needed to plot the safest path forward. Researchers can adjust non-
pharmaceutical interventions such as social distancing, workplace or school closures, and they
can limit the schedules and travel patterns of agents to reflect a local population’s adherence to
stay-at-home orders. Finally, researchers can determine the best way to introduce vaccines to a
population by varying the priority groups (what would happen, for example, if teachers were
prioritized for vaccination over first responders). Importantly, researchers can quickly and easil
program EpiCast to reflect the increasing infectivity of a disease, say through the discovery of

new viral variants.

y
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EpiCast has been used to evaluate numerous public policy scenarios, and school closures are

among the most consequential. The figure below, generated by EpiCast and based on national

data, shows how offsite learning strategies dramatically curb new infections among school-aged

children. From left to right, new infections drop precipitously as a greater share of students shift

to offsite learning. The figure indicates that student-student interactions contribute to the

majority of new infections across the closure scenarios, up to completely offsite learning. While

these policy decisions may never be easy, with EpiCast they can at least be data-driven.
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Figure 3: Student-student interactions account for the greatest share of new infections,
followed by teacher-student interactions.

For further technical details on how EpiCast works, see the developers’ publication in Medrxiv

and the article “What Happens Next” in /663 magazine, both included in the Appendix.
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3. Comparison matrix

Imperial College COVID-19 (CovidSim): Agent-based simulation model for the U.S. and U.K.
Individuals reside in areas defined by high-resolution population density data. Census data were
used to define the age and household distribution size. Within this model, contacts with other
individuals in the population are made within the household, at school, in the workplace, and in
the wider community. Data on the distribution of workplace size was used to generate
workplaces with commuting distance data used to locate workplaces appropriately across the

population. However, industry-specific information is not included.

Institute for Health Metrics and Evaluation (IHME): A deterministic SEIR (susceptible,
exposed, infectious and recovered) compartmental framework to model the effects of non-
pharmaceutical interventions in the United States at the state level. This model does not include
the granularity and detail of other agent-based simulations such as schools, industry-specific
contact patterns, and age-specific variability in regards to compliance. This model is limited to
assessing the impact of social distancing mandates and levels of mask use as well as average

mobility, testing, pneumonia seasonality, and others at aggregate and generic population levels.

CoViD19 Modeling Kit (COMOKIT): This agent-based generic framework designed to
simulate the spread of disease with high resolution was released in 2020 in response to COVID-
19. Although this framework allows users to customize their area of interest and incorporate as
much population detail as needed, it does not come with data. Therefore, users need to collect
and verify the quality of the data before using it to parametrize the hundreds of parameters
available in the model. The model has been validated in Vietnam, but it may require extensive
time and effort to adapt it to a different region or disease of interest. This software models
populations at the city scale, so it only requires standard computing resources with a graphical

user interface.

13



The Global Epidemic and Mobility Model (GLEAM):

The GLEAM framework is based on a metapopulation approach in which the world is divided
into geographical subpopulations. The entire planet is divided into cells with resolution of
approximately 25 x 25 kilometers. Subpopulations are constructed from satellite imagery, with
each subpopulation centered around a major transportation hub obtained from the International
Air Transport Association (IATA) and OAG (a company whose name is derived from its
“Official Aviation Guide” origins) database. Hubs generally correspond to major urban areas
and airports. A synthetic population is generated using detailed sociodemographic data from
publicly available sources, ranging from macro data, such as census data, to micro data, such as
surveys on socio demographic features. The framework focuses on population features such as
age structure, household composition, school structure, and employment rates. Individuals within
these populations are assigned realistic age-specific contact patterns. Individuals can interact in
households, schools, workplaces, and the general community. This model relies on air
transportation for movement of individuals and does not use ground transportation to capture

short-range travel.

14



Performance

Imperial = ie Census

COMOKIT

parameter

United States at the
Census tract level

Comments: A model’s geographic and spatial resolution refers to the region and population size it is
capable of simulating. EpiCast utilizes census-tract level modeling, allowing for finer granularity in
decision-making support. Census tracts generally have a population size between 1,200 and 8,000 people,
with an optimum size of 2,000 people. Other models lack this acute resolution, making it difficult to resolve

College

Global, United
States at the
State level

Vietnam at
the city
scale

Global at the 25x25
kilometers

the local effect of proposed changes such as school district reopening.

Yes

Comments: Public health orders responding to COVID-19 restricted industry activities and occupancy
limits, for example by shuttering some businesses and limiting occupancy in others. Only EpiCast can
model the impact of closures in specific industries, factoring in their distinct exposure levels and risks. This

capability is critically important to evaluating a tiered reopening approach.

School closures,
workplace
restrictions by
NAICS codes,
reduction in contacts
due to mask use and
social distancing,
1solation, and
vaccination

School
and
university
closures,
social
distancing,
quarantine,
and case
isolation

Comments: EpiCast can simulate a much larger variety of “what if” scenarios to inform policy decisions

that impact all levels of society.

Yes

Travel bans,
school
closures,
social
distancing,
and case
1solation

Travel restriction,
school closures,
work from home,
social distancing

Comments: Individuals vary in their enthusiasm for and adoption of preventative social distancing
measures. EpiCast accounts for this by using mobility data (cell phone movement) to estimate social
distancing compliance in a given area. This provides a better level of detail than competitors because social
distancing compliance is a strong determinant of viral spread.
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Performance Imperial

IHMECensus COMOKIT GLEAM
parameter College

Comments: EpiCast can incorporate information about viral variants and differences in infectivity. This
capability is important because the multiple circulating strains have different transmissibility and may
impact the potential benefit of vaccines and other mitigation measures.

Comments: EpiCast can discern between school type. This capability is important because student and
staff behavior, infectivity, and contact varies based on whether a facility is a high school, elementary
school, or preschool. No other models account for this difference.
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4. Describe how your tech outperforms your competitors’ tech.

Geographic and spatial resolution. EpiCast models populations at a much finer resolution than
competing models. Several competing models use nationwide census data, or at the very finest,
statewide data, to create synthetic populations for their projections. EpiCast, on the other hand,
leverages population data at the census tract level, so its projections are based on approximately
2,000 person groups instead of entire states. Projections based on these smaller populations are
far more effective at simulating the results of policy changes, especially if that policy change is

implemented only at a local level.

Stratifies workers by industry. EpiCast is the only model to use North American Industry
Classification System (NAICS) codes to assign occupations to its modeled population. This is
important because a person’s occupation is a key component in evaluating their overall risk of
contracting a disease. These industry codes allow policymakers to project the impact of industry-
specific closures. For example, EpiCast can model how closing restaurants or the hospitality
industry will impact spread. Additionally, this level of granularity enables policymakers to assess
the impact of various vaccine distribution approaches (e.g., prioritizing school staff versus

prioritizing healthcare workers and first responders).

Capable of modeling diverse intervention strategies. EpiCast is capable of modeling far more
intervention strategies than competing models. EpiCast can model school closures, workplace
restrictions by NAICS codes, reduction in contacts due to mask use and social distancing, and
isolation of cases, both before and after official diagnosis. EpiCast can also model a wide variety
of scenarios relating to vaccinations. For example, EpiCast can project the spread of disease if a
vaccine is far less effective than predicted, or if a much smaller proportion of the eligible
population is vaccinated. EpiCast can even account for differing vaccine hesitancy by county. A

sound understanding of these scenarios helps inform public health policy.

Accounts for varying compliance with social distancing. EpiCast successfully leverages cell
phone data from UnaCast to reflect real-world social distancing compliance. Compliance with
social distancing and travel restrictions varies by county, and EpiCast is able to incorporate this

data into its projections.

17



Incorporates new infectivity information of viral variants. EpiCast was the first model to
incorporate the increased infectivity levels of circulating viral variants. Differences in infectivity
can drastically impact the course of a disease through a population and impact vaccine

effectiveness.

Discerns between school types. Other projection models treat all schools equally in terms of
their capability to spread a disease. EpiCast, however, recognizes that high schools and pre-
schools present different risks for spread among students and teachers. High school students
interact with more people in a given school day, meaning they have a higher chance of
interacting with a carrier. Elementary school students, in contrast, interact with fewer students
(thus fewer potential carriers), but for a greater duration, meaning that if they do interact with a
carrier, their odds of contracting the disease are much higher. These distinctions are important,
and they allow EpiCast to more accurately project the outcomes of reopening policies and

provide optimal recommendations to when it is safe to reopen.
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5. Describe the limitations of your tech.

1.

EpiCast is currently parameterized to reflect only the United States. We are pursuing
expansion to a global-scale model contingent on accurate census-like data from participating
countries. We are collaborating with Brazil to acquire census data for its regions, and have
begun the process of coordinating with the World Health Organization (WHO) to facilitate

collaborations with other countries.

EpiCast currently uses input from the 2000 census because the required tract-to-tract work
flow data is not available in the 2010 census. This older data has not greatly impacted the
accuracy of our projections because we are able to complement it with more recent data, such
as 2020 NAICS codes and cell phone mobility data provided by Unacast in 2020. Epicast

will likely benefit from the updated census data once we incorporate it later this year.

EpiCast does not explicitly include testing and contact tracing, instead favoring general
adjustments to transmission and isolation rates to achieve a similar result. This approach may
marginally underestimate the number of asymptomatic or presymptomatic people who are
isolating due to contact tracing, but it preserves a massive amount of computing resources

while providing comparable information.

EpiCast does not automatically include national holidays or other events that may in the short
term affect disease spread and case counts. Users must manually adjust the model to account
for more frequent travel and higher rates of contact during these periods. The model may be
updated to include holidays automatically in the future, but we are currently prioritizing

development of other, more important features.
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Summary:

For decades, researchers used carefully calculated averages to model infectious disease spread.
In this traditional approach, transmission rates dictate the number of “susceptible” individuals that pour
into the “infected” bucket, while the “recovered” trickle out. The models’ shortcomings —their
weakness in modeling the early and late stages of an outbreak and their inability to account for natural
variability in a population—became apparent in March 2020 with the onset of the COVID-19 pandemic.
Policymakers needed a better way to understand and predict an uncertain and deadly future while

gauging the efficacy of every intervention strategy at their disposal.

The EpiCast disease simulation tool addresses this critical need, empowering policy makers to
predict the impacts of an enormous range of variables and mitigation methods, including school and
industry-specific closures, social distancing compliance, mask wearing, and vaccinations. No other
model evaluates the workforce population by industry classification, enabling priority vaccine
distribution to healthcare workers, first responders, and other essential workers. EpiCast stands alone in
its unprecedented granularity and fidelity, providing essential information to support public health

policy.
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Letters of Support

e Dr. Matthew Biggerstaff, Influenza Division, Centers for Disease Control and Prevention

e Dr. David Scrase, New Mexico Human Services Department

e Dr. Sarah Pallas, World Health Organization (WHO) Strategic Advisory Group of Experts
(SAGE)
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DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service

Centers for Disease Control
and Prevention (CDC)
Atlanta, GA 30341-3724

4/3/2020
Subject: Letter of support for the EpiCast Model for an R&D 100 Award
Dear R&D Award Committee Members:

I am sending this letter to support the nomination of the EpiCast Model for an R&D 100
award. The EpiCast Model is an agent-based simulation of the U.S. that can simulate the
spread of diseases, such as COVID-19, and quantify the impact of mitigation strategies.

After novel coronavirus disease was declared a global pandemic, the EpiCast team adapted
their model to simulate COVID-19 and subsequently used it to address several critical
questions including the assessment of school reopenings, the impact of workplace closures,
restrictions, and re-openings, and most recently, the impact of vaccination distribution
strategies. As a Co-Lead for the CDC and Interagency Modeling Teams for the COVID-19
response since early 2020, I have been in charge of identifying modeling capabilities that
could provide decision support to policy makers and stakeholders. The EpiCast model
contributed towards the assessment of several “what if” scenarios to inform COVID-19
planning and development of guidance to mitigate the spread. One of the unique elements
of EpiCast is its ability to assess the combined impacts of different interventions in the
presence of heterogeneous and emergent behavior. Results from the EpiCast model have
helped mitigate the impact of COVID-19 through the development of projections to assist
policy decisions and enactment of public health orders.

Capabilities like EpiCast are needed and will be transformative in our ability to understand
and respond more effectively to future outbreaks and pandemics. The EpiCast model could
be exceptionally useful in providing actionable projections to minimize the potential impact
of infectious diseases. Therefore, I am pleased to support the EpiCast Model for the R&D
100 award, as it has great promise for supporting the infectious disease modeling
community and in providing decision support to stakeholders.

Sincerely,

MPQPHN

Dr. Matthew Biggerstaff

Research Epidemiologist

Applied Research and Modeling Team, Influenza Division, NCIRD
Centers for Disease Control and Prevention
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Angela Medrano, Deputy Secretary

Kari Armijo, Deputy Secretary

Nicole Comeaux, J.D., M.P.H., Medicaid Director

April 1, 2021

Paul J. Heney

VP, Editorial Director

R&D World

1111 Superior Ave., #2600
Cleveland, OH 44114

Dear Mr. Heney,

| write to express my strong support of the nomination of the Los Alamos National Laboratory (LANL)
EpiCast Model for a 2021 R&D 100 Award. This model has been critical in providing science-based
decision support to assess the impact of COVID-19 mitigation strategies and provide recommendations
for New Mexico state pandemic response policies, guidance, and public health orders. As the Secretary
of Health and Human Services for the State of New Mexico, | can attest its contributions have had a
significant role in the state’s COVID-19 response that not only reduced the spread but also save lives.

The EpiCast Team works extensively with me, my staff, and the New Mexico Department of Health so
that we could be as informed as possible during the evolving COVID-19 pandemic. This included
performing analyses with a short turnaround time, working off-hours, and responding to my numerous
texts day and night.

The EpiCast team’s expertise was especially important as we wrestled with prediction of the infection
rate and how that would strain our limited healthcare resources to respond to and care for New
Mexicans. As you may know, New Mexico has a shortage of hospital general beds (17.7) and Intensive
Care Unit (ICU) beds (2.2.), lower than the U.S. averages of 23.5 and 2.7 beds per 10,000 residents,
respectively. The EpiCast model (an agent-based simulation) provided vital scientific expertise and
disease forecasting capabilities to help inform and guide the decisions our office needed to make.
Specific areas where their expertise made a positive difference included:

e Highly accurate forecasting of cases, mortality rates, and disease growth rates;

e Modeling for county-by-county prediction of disease transmissibility;

e Modeling school reopening scenarios;

e Detailed tracking and forecasting of hospital and ICU bed utilization;

e Providing behavioral health utilization analyses;

e Anticipation and forecasting of the need for additional shelter capacity; and,

e Prediction of vaccination impacts.

| know the talents of the EpiCast team during the COVID-19 pandemic were only available because of
many prior years of sustained and dedicated scientific research and development at LANL. LANL

Office of the Secretary | PO Box 2348 — Santa Fe, NM 87504 | Phone: (505) 827-7750 Fax: (505) 827-6286
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Angela Medrano, Deputy Secretary

Kari Armijo, Deputy Secretary

Nicole Comeaux, J.D., M.P.H., Medicaid Director

embodies the kind of scientific leadership that is so important for our state and for the United State. It
has been such an honor and privilege to work for a Governor who is evidence based and science
oriented, to the point of requiring the development of some of the nation’s best COVID data systems
here in New Mexico. The team at LANL is a major factor to our success, and it makes me proud that New
Mexico is home to such scientific leadership. | wholeheartedly support the nomination of the EpiCast
team for a 2021 R&D 100 Award.

Sincerely,

W ;K (jfm MA

e

David R. Scrase, M.D.
Cabinet Secretary
New Mexico Human Services Department

Office of the Secretary | PO Box 2348 — Santa Fe, NM 87504 | Phone: (505) 827-7750 Fax: (505) 827-6286



April 7,2021
Subject: Letter of support for the EpiCast Model for an R&D 100 Award
Dear R&D Award Selection Committee Members:

I am delighted to lend my support to the nomination of the EpiCast Model for an R&D 100
award. The EpiCast Model is an agent-based simulation of the U.S. used to simulate the spread
of diseases, such as COVID-19, as well as to understand and measure the potential impact of
“what if” mitigation strategies. After the novel coronavirus disease (COVID-19) was declared a
global pandemic in early March 2020, the EpiCast team adapted their model to simulate COVID-
19 and assess the impact of non-pharmaceutical (e.g., facemask, closures, isolation) and
pharmaceutical (e.g., vaccines) intervention strategies.

I am a member of the World Health Organization (WHO) Strategic Advisory Group of
Experts (SAGE) Working Group on COVID-19 Vaccines, which has as part of its terms of
reference to “provide guidance for the development of prediction models to determine the
optimal age groups and target populations for vaccine introduction and guide vaccine
introduction for optimal impact.” The EpiCast team provided reports and briefings on their
vaccine distribution modeling scenarios to the WHO SAGE Working Group on COVID-19
Vaccines. In particular, the EpiCast model explored the impact of vaccination strategies in
school settings, the only model identified at that time for such settings, which was important
in considering vaccination prioritization strategy options for teachers and school staff, as well
as interactions between vaccination prioritization approaches and school-based mitigation
measures.

Models like EpiCast have played a significant role in the nation’s and the world’s COVID-19
response and are critical for responding to future disease outbreaks and pandemics. I strongly
support the EpiCast Model for the R&D 100 award, given its demonstrated value in providing
decision support to diverse stakeholders responding to infectious disease threats and its potential
for further development for future policy and programmatic applications.

Sincerely,

Sad 5%t

Dr. Sarah Pallas

Economist

Global Immunization Division

U.S. Centers for Disease Control and Prevention
1600 Clifton Road NE

Atlanta, GA 30329

Tel: 404-718-8759

Email: spallas@cdc.gov
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Using an Agent-Based Model to Assess K-12
School Reopenings Under Different COVID-19
Spread Scenarios — United States, School Year

2020721

Timothy C. Germann!, Manhong Z. Smith??, Lori Dauelsberg?, Geoffrey Fairchild?,
Terece L. Turton?, Morgan E. Gorris*®, Chrysm Watson Ross**, James P. Ahrens®,
Daniel D. Hemphill’, Carrie Manore?, and Sara Y. Del Valle?”

"Physics & Chemistry of Materials Group, Los Alamos National Laboratory
Information Systems & Modeling Group, Los Alamos National Laboratory
3Center for Nonlinear Studies, Los Alamos National Laboratory
“Applied Computer Science, Los Alamos National Laboratory
SComputer Science Department, University of New Mexico
®National Security Education Center, Los Alamos National Laboratory
7Advanced Research in Cyber Systems, Los Alamos National Laboratory

* To whom correspondence should be addressed: Email: sdelvall@lanl.gov

Abstract

School-age children play a key role in the spread of airborne viruses like influenza due to the
prolonged and close contacts they have in school settings. As a result, school closures and other non-
pharmaceutical interventions were recommended as the first line of defense in response to the novel
coronavirus pandemic (COVID-19). Assessing school reopening scenarios is a priority for states,
administrators, parents, and children in order to balance educational disparities and negative population
impacts of COVID-19. To address this challenge, we used an agent-based model that simulates
communities across the United States including daycares, primary, and secondary schools to quantify
the relative health outcomes of reopening schools. We explored different reopening scenarios
including remote learning, in-person school, and several hybrid options that stratify the student
population into cohorts (also referred to as split cohort) in order to reduce exposure and disease spread.
In addition, we assessed the combined impact of reduced in-person attendance in workplaces (e.g.,
through differing degrees of reliance on telework and/or temporary workplace closings) and school
reopening scenarios to quantify the potential impact of additional transmission pathways contributing
to COVID-19 spread. Scenarios where split cohorts of students return to school in non-overlapping
formats resulted in significant decreases in the clinical attack rate (i.e., the percentage of symptomatic
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individuals), potentially by as much as 75% . These split cohort scenarios have impacts which are only
modestly lesser than the most impactful 100% distance learning scenario. Split cohort scenarios can
also significantly avert the number of cases—approximately 60M and 28M—depending on the scenario,
at the national scale over the simulated eight-month period. We found the results of our simulations to
be highly dependent on the number of workplaces assumed to be open for in-person business, as well
as the initial level of COVID-19 incidence within the simulated community. Our results show that
reducing the number of students attending school leads to better health outcomes, and the split cohort
option enables part-time in-classroom education while substantially reducing risk. The results of this
study can support decisions regarding optimal school reopening strategies that at the population level
balance education and the negative health outcomes of COVID-19.

Disclaimer:

This work was sponsored by the United States Centers for Disease Control and Prevention. Los
Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad
National Security, LLC, for the National Nuclear Security Administration of the United States
Department of Energy under contract # 19FED1916814CKC. Approved for public release: LA-UR-20-
27982.

The findings and conclusions in this report are those of the authors and do not necessarily represent the
official position of the Centers for Disease Control and Prevention or Los Alamos National
Laboratory.
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1. Introduction

The novel coronavirus disease (COVID-19) was first identified in Wuhan, China in late
December 2019 [3] and subsequently spread worldwide. By March 11, 2020, when the World Health
Organization (WHO) declared COVID-19 as a global pandemic, there were already close to 120,000
confirmed cases and more than 4,300 deaths worldwide [4]. As of October 8, 2020, there are now over
36 million confirmed cases and over a million deaths worldwide, with over 7.8 million confirmed
cases and over 217,000 deaths in the U.S. [5]. The COVID-19 virus spreads primarily through small
droplets and aerosols of saliva or discharge from the nose of an infected person [6]. At this time, there
are no specific vaccines or large-scale treatments for COVID-19 [6], demonstrating the urgent need for
non-pharmaceutical approaches that could reduce its spread.

Public officials have recommended a range of individual- and community-level non-
pharmaceutical interventions to slow the spread of COVID-19 and mitigate the impact on people,
communities, and healthcare infrastructure [7]. Individual measures include personal protective
actions, such as applying proper cough etiquette in daily life, hand hygiene, wearing face coverings/
masks, staying home when sick (also called isolation), or staying home after an exposure to a
confirmed case or after residing in/arriving from a community with known widespread transmission
(also called quarantine). Community measures may include temporary school closures/dismissals and
other social distancing measures such as stay-at-home recommendations, canceling mass gatherings,
and minimizing face-to-face contact at workplaces.

As the cases of COVID-19 started to emerge during the early spring of 2020 in the U.S., most
of the primary and secondary schools closed for the remainder of the 2019-2020 school year [8]. There
has been a significant debate about school closures and reopenings because of the existing educational
disparities that have been exacerbated by the pandemic, social isolation, and other unintended
consequences such as access to free and subsidized lunches at school. However, there is anecdotal
evidence that reopening schools, for the traditional academic year in autumn 2020, in areas
experiencing widespread community transmission provide additional transmission pathways between
communities that were otherwise mostly isolated. For example, the Cherokee County School District
in Georgia reported 108 confirmed cases of COVID-19 within two weeks of schools reopening, and 3
out of the 6 high schools in the district reverted to full remote leaning by the third week [9, 10]. In
Mississippi, 71 of the 82 counties reported positive COVID-19 cases within few weeks of schools
reopening [11]. Similarly, in Tennessee, over 2,000 children tested positive for COVID-19 within two
weeks of schools reopening [12].

Mathematical and computational models of COVID-19 spread provide a platform to examine
which modalities of in-person instruction may be feasible during the ongoing COVID-19 pandemic.
Several recent studies have begun to quantify the impact of various non-pharmaceutical interventions
in combination with different school reopening strategies and have found that reopening schools as
normal is likely to increase the number of COVID-19 cases [13, 14]. Other studies have found that
closing schools and incorporating social distancing measures in classrooms are effective in reducing

SCHOOL REOPENING MODELING 3
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the spread of COVID-19 [15]. In addition, hybrid approaches to learning, such as capping the in-
person classroom size, may be effective in reducing transmission [14,16] and provide a balance
approach between supporting education while limiting the spread of COVID-19.

An additional challenge of simulating the impacts of COVID-19 within a community is also
simulating workplace restrictions, which may reduce transmission pathways within the community.
We address this gap by combining non-pharmaceutical interventions, school reopening scenarios, and
workplace restrictions into an agent-based model, EpiCast, to assess the potential feedbacks on the
spread of COVID-19. Using parameters provided by the Centers for Disease Control and Prevention
(CDC) to simulate COVID-19 transmission within the U.S., we explored several reopening scenarios
including remote learning, in-person school, and several hybrid options that stratify the student
population into cohorts in order to reduce exposure and disease spread. The results of this study can
support decisions regarding optimal school reopening strategies that balance education and the
negative health outcomes of COVID-19.

2. Methods

Model Description

We used an agent-based model, known as Epidemiological Forecasting (EpiCast), originally designed
to simulate community-level influenza transmission in the U.S. at the national-scale and adapted it to
simulate COVID-19 [17]. The primary modifications for COVID-19 relate to the disease natural
history (as described later) since the transmission mechanisms for COVID-19 are similar to that for
influenza. The national-scale simulation model consists of 281 million individuals distributed among
65,334 census tracts to closely represent the actual population distribution according to the 2000 U.S.
Census data [17]. Each tract is organized into 2,000-person communities resulting in 180,492 model
communities. The model combines U.S. Census demographics and worker-flow data to generate
daytime and evening contact networks based on potential contacts emerging at daycares, schools,
workplaces, households, neighborhoods (~500 people), and communities (e.g., mall, supermarket)
[17]. In each census tract, the synthetic population matches the actual population in several statistical
measures including the number of residents and households, the household’s age distribution, the
household size and membership distribution, and employment status for working adults. In addition,
each workplace is assigned a 3-digit NAICS (North American Industrial Classification System) code
based on the proportion of workers in each sector in each county. We used a regional model (~8.6
million people in the Chicago Metropolitan Statistical Area (MSA)) to explore additional scenarios
(given the extensive computational nature of the national model) in order to determine the impact of
different assumptions on COVID-19 spread and mitigation strategies.

A new feature of EpiCast, for the purpose of this study, is the ability to capture interactions
between teachers and students while in school settings. In previous EpiCast simulation models [17,18],
school mixing groups accounted only for transmission between students; teachers and staff were not
explicitly included. For the present study, we associate a workplace with NAICS Subsector Code 611

SCHOOL REOPENING MODELING 4



medRxiv preprint doi: https://doi.org/10.1101/2020.10.09.20208876; this version posted October 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available
for use under a CCO license.

(Educational Services) with each school, and account for mixing between the teachers, staff, and
school children. Where necessary, we add additional workplace(s) in a community to achieve an
average 14:1 student:(teacher/staff) ratio in each school, based on recent statistics from the National
Center for Education Statistics [19]. This is necessary because our community model assumes that
elementary and secondary school children attend school in the tract/community in which they reside,
not accounting for bussing across Census tract boundaries which the actual employment statistics
reflect. Transmission between children in a school mixing group, and between teachers/staff in a
workplace mixing group, are unchanged from the original model. For the added mixing, from students
to teachers/staff and vice versa, we assume that the individual child-adult contacts are twice the child-
child contact rates. Our results were not overly sensitive to this assumption, and we note that the
numbers of child-child transmissions are still greater than child-adult transmission due to the much
larger number of children in a school. For example, if there are approximately 14 times more children
than adults in a school, and approximately two times greater transmission between an individual child
and individual adult, the child-child transmission will be about seven times greater than child-adult
transmission.

Epidemiological Parameter Assumptions

In order to simulate COVID-19 transmission within a community, we used parameter assumptions and
model-produced epidemiological data from the CDC’s Pandemic Planning Scenarios [20] (Table 1).
The disease natural history for COVID-19 was assumed to be as follows: the distribution of latent
infection is 1-7 days, the incubation period is 1-8 days, and infectious period is 3-9 days. Furthermore,
the proportion of infections which remain asymptomatic are assumed to be 40% and the relative
infectiousness of asymptomatic or pre-symptomatic individuals is assumed to be 75%. Self-isolation of
symptomatic individuals is assumed to be similar to those used for pandemic influenza studies [21].
Assumptions regarding ideal reduction in contacts due to social distancing, facemasks, and hygiene is
shown in Table 2. The “reduced” social distancing scenarios assume a 50% reduction in compliance of
preschool and elementary school-age children to account for limited facemask or social distancing
measures. Finally, long distance travel is assumed to be reduced due to travel and quarantine
restrictions implemented across the nation (Table 2). Each county was initialized and calibrated to
match the cumulative case counts during the first two weeks of August 2020 as reported by the New
York Times COVID-19 repository [22]. Note that we do not report the number of cases during the
calibration phase and thus assume that the simulation starts on August 15, 2020.

Table 1. Summary of Key EpiCast model parameters for this study.

Parameter Age Group
0-49 50-64 65+ Overall
Symptomatic case hospitalization rate 0.017 0.045 0.074 0.034
Symptomatic case fatality rate 0.0005 0.002 0.013 0.004

SCHOOL REOPENING MODELING 5
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P t f hospitalized
erc?n. age of hospi 2'1 ized cases 23.6% 36.2% 35.1% i

requiring treatment in the ICU

Percentage of hospitalized cases

requiring >= 1 day of ventilator use

11.7% 21.8% 21.3% -

Assumptions regarding full time, part-time, the number of individuals teleworking, and employees laid
off as a result of the current COVID-19 situation are shown in Table 2. Some of these percentages
were chosen based on discussions with subject matter experts from the State of New Mexico.
Furthermore, the percentage of individuals teleworking are based on two surveys of the labor market
near the beginning of the COVID-19 pandemic in the U.S. from the Bureau of Labor Statistics (BLS)
[23]. The ability to telework for each 3-digit NAICS sector also comes from the BLS survey and is
shown in Table 3. The model assumptions on working in the workplace versus working from home or
being laid off were based on the values in both Table 2 and Table 3.

Table 2. Workforce status & reduction in contacts due to social distancing assumptions.

Reduction in Contact Long
eduction in Contacts
Working Status . . . Distance
due to social Distancing
Travel

Workplace Full Part-time Telework Laid Other non-

Workpl
orkplace household

Assumption Time or Shift Take-up (0)i§
Fewer Open

44% 32% 20% 16% 10% 50% 50%
Workplaces
More O
orepPen 5oy, 329% 15% 8% 10% 25% 75%
Workplaces

Table 3. Ability to Telework by NAICS 2-Digit Sector.

NAICS 2-Digit ~ -PHityto
NAICS Sector Telework
Code .

(Median)
Agriculture & Mining 11 8.1%
Utilities & Construction 21-23 32.7%
Manufacturing 31-33 41.0%
Wholesale 42 26.5%
Retail 44-45 26.5%
Transportation & Warehousing 48-49 32.7%
Information 51-52 80.4%
Finance, Insurance, & Real Estate 52-53 81.1%
Professional and Business Services 54-56 71.6%

SCHOOL REOPENING MODELING 6
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Education 61 47.9%

Health & Social Services 62 47.9%
Leisure & Hospitality 71-72 20.3%
Other Services 81 39.9%
Government & Administration 92 57.0%

The information from BLS is by 3-digit NAICS sector (and is used in the model at the 3-digit level) but is shown as 2-digit
for brevity as most 3-digit levels share the same value as those in the rolled-up 2-digit NAICS category.

Workplace Modeling Assumptions

Per the phase guidelines released in Opening Up America Again [24], we modeled two scenarios:
“Fewer Open Workplaces,” similar to Phase 2 of Opening Up America Again, and “More Open
Workplaces”, similar to Phase 3. These two scenarios describe different levels of in-person workplace
assumptions (Figure 1, Tables 2-3). Specifically, Fewer Open Workplaces encourages telework
whenever possible and feasible with business operations as well as limited onsite operations for a small
set of businesses. More Open Workplaces assumes staffing of additional worksites with an expanded
number of onsite workers. An example is a retail business may be open to 25% customer capacity as
per Phase 2 recommendations and the NAICS industry percentage of employees working onsite is 50%
(in order to accommodate the workers necessary for the operation of the business) for Fewer Open
Workplaces. For More Open Workplaces, this business may have the opportunity to have a 50%
customer capacity and the percentage of employees needed would increase to 75%. For a comparison
across intervention approaches, we also use a Pre-pandemic Behavior scenario, which assumes that all
businesses are open with no capacity or social distancing restrictions.

NAICS Sectors Employess Working Onsite by Sector
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Figure 1. NAICS sectors assumptions for Fewer Open Workplaces and More Open Workplaces.
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School Scenarios

We explored the impact of various school reopening scenarios as described in Table 4. These scenarios
range from 100% distance learning to 100% onsite learning (Baseline), as well as partial onsite
learning with alternating days or weeks. We also explored 80% in-person enrollment due to recent
surveys, which suggest that at least 20% of parents may not send their children back to school [25]. For
the regional model, we assume that the 2020-2021 school year for the Chicago Public Schools begins
on September 8™, 2020. The national scale model assumes a different start date for the 2020-2021
school year ranging from August 3%, 2020 (Arizona) to September 16", 2020 (New York) based on
publicly available information from school districts.

Table 4. Descriptions of school reopening, baseline, and pre-pandemic scenarios.§

Scenario Name Scenario Code Scenario Description
No mitigati 11 busi letel i.e., 1009
Pre-Pandemic Behavior Pre-Pandemic Behavior L IOI_IS’ a uS{ness.es cor.np ‘? cly open (i, %
enrollment with no social distancing in place).
Baseline Baseline All students physically in school with some social

distancing (i.e., 100% enrollment).

80% Onsite Learning with

o . 80%_OL_LessSD All enrolled* students physically in school.
Reduced Social Distancing}
Sl?fa?gzgfafgﬁngi:gl;h 80%_OL_SD All enrolled* students physically in school.
80% Partial Onsite Learning Two non-overlapping cohorts of students — 40% of the
— Alternating Week with ~ 40%_POL_LessSD_Week students attend one week and the other 40% attend the next
Reduced Social Distancing$ week.

Two non-overlapping cohorts of students — 40% of the
students attend for two days/week (Mon/Tue) and the other
40% attend for two days (Thu/Fri). Wednesday off for

80% Partial Onsite Learning
— Alternating Days with 40% POL_LessSD_2Day
Reduced Social Distancing}

disinfection.
80% Partial Onsite Learning Two non-overlapping cohorts of students — 40% of the
— Alternating Weeks with 40% POL SD Week students attend one week and the other 40% attend the next
Ideal Social Distancingf week.

Two non-overlapping cohorts of students —40% of the
students attend for two days/week (Mon/Tue) and the other
40% attend for two days (Thu/Fri). Wednesday off for
disinfection.

80% Partial Onsite Learning
— Alternating Days with 40%_POL_SD_2Days
Ideal Social Distancing¥

100% Distance Learning Offsite No students physically in school.

§Note that given the similar results between all the “Less SD” scenarios in the regional simulations, we did not run the Less
SD for the nationwide scenarios.

*Note that 80% in-person enrollment was used due to recent surveys that suggest that at least 20% of parents may not send
their children back to school [25].

T Ideal social distancing assumes 50% reduction in contacts due to students staying 6 ft from other people, increased
hygiene, and masks/face coverings.

1 Reduced social distancing assumes 25% reduction in contacts of preschool and elementary school-age children to account
for limited facemask use or limited social distancing measures.
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3. Results

Overall Regional and National Impacts
The impacts of school reopening for the Chicago MSA region are summarized in Figure 2 and Tables
A-1 and A-2 in the Appendix. Figure 2 shows the epidemic curves for nine school reopening scenarios
under Fewer Open Workplaces and More Open Workplaces for the Chicago MSA region aggregated
over the simulated eight-month period (15 August 2020 through 11 April 2021). Figure 3 shows the
national simulation results of six scenarios under Fewer Open Workplaces and More Open Workplaces
for the nation. The results show similar trends for the Baseline, 80% in-person learning, 40% 2-day
and alternating week, and offsite school scenarios with Fewer Open Workplaces and More Open
Workplaces assumptions for both regional and national simulations.

All the partial onsite learning scenarios delay the epidemic peak and flatten the curve for Fewer
Open Workplaces, which is consistent with previous studies on school closures [13-16] (Figure 2, 3).
However, for More Open Workplaces, the peak for most scenarios is spread around three weeks
regardless of school reopening scenario and the impact of hybrid school reopenings is reduced.
Additionally, the reduced social distancing scenario (analyzed only the Chicago MSA region), which
accounts for limited compliance in facemask usage and social distancing measures for children in K-8
(i.e., kindergarten through grade 8™), has a slight but significant decrease in the clinical attack rate
(CAR) (i.e., the percentage of symptomatic individuals) over the simulated eight-month period. That
is, for the Fewer Open Workplaces scenario, the CAR is reduced from 26.3% for the 80% less social
distancing scenario to 23.8% for the ideal social distancing scenario. Similarly, the CAR is reduced for
the 40% 2-day split cohort scenario from 8.8% to 5.8% for the Fewer Open Workplaces scenarios
depending on the ideal or reduced social distancing assumptions, respectively. These results show that
reducing the number of students attending in-person education as well as splitting the student
population into cohorts, can reduce the potential negative impacts of COVID-19 spread.
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The results show heterogeneity in the impacts across the U.S. Figures 4-5 show cumulative
cases per 100K population at the county level for EpiCast simulated results for the 40% split cohort
scenario attending 2 days a week and the 80% onsite school scenario. Note that the cumulative number
of cases include both symptomatic and asymptomatic individuals aggregated over eight-months.

Fewer Workplaces: 40%_POL_SD_2Days

Cumulative Cases per County per 100K

o 10000 20000 30000 40000 50000 60000 70000

Figure 4. Cumulative cases per county per 100K for EpiCast simulated results for two non-
overlapping cohorts of 40% of students attending school 2-days a week.

Fewer Workplaces: 80%_OL_SD

Cumulative Cases per County per 100K

o 10000 20000 30000 40000 50000 60000 70000

Figure S. Cumulative cases per county per 100K for EpiCast simulated results for 80% of students
attending school full time.
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Tables 5-6 show key results from the model aggregated for the nation. Table 5 shows the total
number of cases, deaths, and hospitalizations for each scenario for the full eight-month simulation
period and for the four weeks around the peak of the epidemic. Table 6 shows the peak incidence and
prevalence as well as the time to peak and the total CAR for each scenario. Note that the cumulative
number of cases includes both symptomatic and asymptomatic individuals as simulated by EpiCast.
Similar impacts as the Chicago MSA model (see Appendix) are observed at the national level but the
overall attack rate is lower for all scenarios. Specifically, the scenarios with the lowest attack rate
include the 100% offsite, 40% 2-day and alternating weeks school scenarios (i.e., Fewer Open
Workplaces: 4.1%, 5.6%, and 6.1%, respectively). As noted earlier, the impacts of COVID-19 spread
is lower for the Fewer Open Workplaces compared to the More Open Workplaces for all scenarios.

Table 5. Summary of key EpiCast results for the Nation — Part 1

During Peak 4 Weeks August 15, 2020 to April 11, 2021

‘Workplace

) Scenario Name
Assumptions

Cases Hospitalized  Deaths Case Hospitalized  Deaths

Pre-Pandemic Behavior | 59,664,577 1,798,188 | 107,322 | 110,244,127 3,370,360 | 230,451
Baseline 24323551 685,746 | 38,649 | 75,049,776 2,132,798 | 128,292

Fewer Open 80%_OL_SD 12,346,146 354,878 | 20,900 | 55,178,391 1,588,821 | 95,848
Workplaces 40%_POL_SD_Week 2,263,045 67,090 | 4,108 | 15922257 466,195 | 27,874
40%_POL,_SD_2Days 1,997,647 59,056 | 3,624 | 14,457,662 424,601 | 25474

Offsite 1,336,344 39,827 | 2484 | 10,665,240 316,245 | 19,169

Pre-Pandemic Behavior | 68,242,756 2,064,544 | 120,162 | 116,608,169 3,584,053 | 242,236

Baseline 49,681,358 1,470,601 | 84,679 | 102,532,010 3,071,051 | 198,517

More Open 80%_OL_SD 38,469,699 1,156,296 | 69,342 | 93,355,312 2,830,004 | 184,520
Workplaces 40%_POL_SD_Week | 21,206,204 657,099 | 42,085 | 75,101,132 2331,432 | 154,298
40%_POL_SD _2Days | 20,479,987 636,866 | 41,000 | 73,871,330 2,296,792 | 152,097

Offsite 17,756,292 556,366 | 36,073 | 68,375,029 2,139,919 | 142,522

Table 6. Summary of key EpiCast results for the Nation — Part 2

Peak Time to Time to

Incidence Peak Peak Prevalence Peak (Clmtet

‘Workplace Assumptions Scenario Name Attack

(Cases per Incidence (Cases per 1000)  Prevalence

1000) (days) (days) Rate (%)

Pre-Pandemic Behavior 2,402,432
Fewer Open
Baseline 922,097 90 19 94 28.9
‘Workplaces
80%_OL_SD 456,896 118 10 122 21.2
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40%_POL_SD_Week 82,209 174 2 178 6.1
40%_POL_SD_2Days 72,686 174 2 178 5.6

Offsite 50,110 8 1 157 4.1

Pre-Pandemic Behavior 2,803,605 62 59 65 44.8

Baseline 1,963,443 69 41 73 394

More Open 80%_OL_SD 1,478,282 83 31 87 359
Workplaces 40%_POL_SD_Week 786,216 111 17 115 28.9
40%_POL_SD_2Days 758,840 111 16 115 28.4

Offsite 654,784 118 14 122 26.3

Source of Infection

Identifying the source of infection can help develop targeted mitigations to reduce the potential spread
of viruses. Figure 6 shows the source of infection for all the national-level scenarios for Fewer Open
and More Open Workplaces for all contact settings within the simulation. Our results show that the
majority of cases are generated at home, followed by neighborhood/community settings. The
percentage of infection generated in schools and workplaces is correlated with the level of
schools/workplaces open. Note that additional infections generated at workplaces are captured under
neighborhood/community due to the fact that EpiCast does not explicitly account for customer
interactions with workers at workplaces/workgroups. Workgroups only account for infections
generated from employee to employee. Figure 7 shows the aggregated source of infection for daycares,
playgroups, and schools for all the national-level scenarios for Fewer Open and More Open
Workplaces. Note that the majority of school-related infections are generated from student-student
interactions due to the prolonged close contacts in these settings. This finding supports strategies that
reduce the number of students attending in-person education.

National Source of Infection (More Workplaces) National Source of Infection (Fewer Workplaces)

i

Al Sehool Groups
A Schont Groaps

Houschod
Howchold

eiehborbon chser B S

uuuuuuu bl Werkgeoup

Nea-Schent il G 0 NomShou CHil Groups

Baseline
0% OL SD
ot
Baseline
0% OL SD.
Ommite

40%_POL_SD_Week
40%_POL_SD_ 2Dy
40% POL SD Week

0% POL_SD_2Days

Figure 6. Source of infection for each of the national-level scenarios for Fewer Open and More
Open Workplaces. Note that about 30% of the infections are generated at home, 20% at
neighborhood/community settings, 15% at schools, and 10% at workplaces.
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National Source of Infection for School/Young Children Groups (Fewer Workplaces)  National Source of Infection for School/Young Children Groups (More Workplaces)
22 20

Teacher-teacher
Student-teacher

Pereent of Total Infections
Pereent of Total Infections

0 Student-teacher ]

offsite
Baseline
offsite 3

Baseline

80%_OL_SD
80%_OL_SD

40% _POL_SD_2Days

2
:
]
H

Pre Pandemic Behavior
40% _POL_SD_Week
40%_POL_SD_2Days

Pre-Pandemic Behavior

Figure 7. School-related source of infection breakdown including playgroup, daycare, student-
student, teacher-student, student-student. The largest contribution is generated from the student-
student interactions.

Cases, Deaths, & Hospitalizations Averted

Non-pharmaceutical interventions are effective in averting the potential cases, deaths, and
hospitalizations that would have otherwise resulted without the implementations of these public health
strategies. We estimated the number of cases, deaths, and hospitalizations that may be averted by
comparing each of the mitigation scenarios against the Baseline scenario. Figure 8 shows the cases
averted and delay to peak incidence for Fewer Open and More Open Workplaces for all the national-
level scenarios. The results show that alternating school cohort scenarios can significantly avert the
total number of cases by approximately 60M and 28M for the Fewer Open Workplaces and More Open
Workplaces, respectively. The results are consistent with previous studies [18, 26-28] that have shown
that non-pharmaceutical interventions can delay the peak of an outbreak (i.e., flatten the curve) and
reduce the total number of cases over the same time frame. Furthermore, the offsite scenario provides
the largest benefit by averting the greatest number of cases followed by the 40% scenarios. Notably,
the 100% distance learning scenario averts nearly 5 million more cases and results in almost twice as
long time-to-peak interval compared to the split cohort scenarios. These results demonstrate the
positive impacts of non-pharmaceutical interventions in reducing disease burden and flattening the
curve to allow for healthcare services not to be overwhelmed. Figure 9 shows deaths and
hospitalizations averted for Fewer Open and More Open Workplaces for all the national-level
scenarios. The results show a significant reduction in deaths and hospitalizations for the 40% 2-
day/alternating week and offsite scenarios under Fewer Open Workplaces assumptions. Specifically,
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over 1.6M hospitalizations and 100K deaths may be averted for all 40% and offsite scenarios under the
Fewer Open Workplaces assumptions.

Differences from Baseline Scenarios
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Figure 8. Cases averted and delay to peak incidence in days for all national-level scenarios. Fewer
people physically at work and more social distancing along with hybrid school scenarios avert the most
cases and delay the peak.
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Differences From Baseline Scenarios
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Figure 9. Deaths and hospitalizations averted for all national-level scenarios. There is a significant
reduction in deaths and hospitalizations for the 40% 2-day/alternating week and offsite scenarios
under Fewer Open Workplaces assumptions

Impacts by Age

We have observed significant variation in the distribution of cases, hospitalization, and deaths by age
throughout the pandemic. Notably, during the early stages of the pandemic, older adults were most
affected but the age distribution has changed as the pandemic has progressed [29].Given the
demographic granularity of EpiCast, we stratified the total cases, hospitalizations, and ICU beds by age
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group for all national-level scenarios for Fewer Open Workplaces (Figure 10) and More Open
Workplaces (see Appendix and Supplemental Files SF1-SF3). Our results show that the highest
number of cases for most scenarios is generated by the 5-18 school-aged group followed by the 30-64
age group. However, adults 30-64 years old make up the largest number of hospitalizations and ICU
bed usage for all scenarios. It is worth noting that the age distribution of cases for our simulated
scenarios looks different than current COVID-19 age distribution for the nation [30]. While the
majority of the cases currently reported were during periods when schools were closed and many
children were in isolation, we suspect that as schools open and more children are exposed, the case
rates for younger populations may increase. Additionally, there may be other factors contributing to
these discrepancies including underreporting due to asymptomatic infections, lack of widespread
testing [31], initial parameter estimates, and contact patterns assumptions. Specifically, recent evidence
suggests that children are more likely to be asymptomatic [32-34] resulting in biased estimates for this
population; however, states that have implemented widespread testing, have reported different age
distributions [35]. In addition, the initial planning scenarios and subsequent age breakdowns [20]
reflected the hospitalization and case fatality age distributions, not the case distribution of infections,
which were closer to the relative population of each age group. Finally, our simulated results used
contact patterns based on historical estimates for influenza studies due to lack of contact patterns
needed to parameterize our model. However, as more evidence becomes available, we will update our
assumptions in order to better assess the impacts of COVID-19 by age.

National Cases by Age Group by Scenario National Hospitalizations by Age Group by Scenario National Ventilators by Age Group by Scenario
(Fewer Workplaces) (Fewer Workplaces) A Groi (Fewer Workplaces) Ay Gioap
3500K o4 mo4

110M 518 W58 600K w518
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100M " 30-64 3000K " 30-64 550K " 30-64
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Figure 10. Total cases, hospitalizations, and ICU beds by age group for all the national-level
scenarios for Fewer Open Workplaces. Social distancing combined with hybrid school scenarios
result in the lowest number of cases.
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State-level Comparisons
Spatial heterogeneity has been evident during the COVID-19 pandemic due to local demographics and

public health orders implemented across the states. We selected 12 representative states (at least one

state per U.S. Department of Health & Human Services Regions) in order to show the spatial
differentiation for all the scenarios. Figures 11-12 show normalized epidemic time series and peak day
comparisons for 12 states for the baseline and offsite scenarios (additional figures are included in the

Appendix). For the baseline with Fewer Open Workplaces, the peak date ranges from October 21%,

2020 (California) to December 10, 2020 (Maine). The peak is dependent on the current transmission

levels for each of these states (i.e., states with higher transmission peak first and states with lower

transmission peak later). Note that the offsite scenarios result in flat epidemic curves.
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Figure 11. Baseline epidemic curves and peak dates for 12 representative states.
(States are sorted by peak date for both scenarios.)
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Figure 12. Offsite epidemic curves and peak dates for 12 representative states.
(States are sorted by peak date for both scenarios.)

Figure 13 shows epidemic time series and peak day comparisons for 12 states for the 40% 2-day split
cohort scenario for both Fewer Open Workplaces and More Open Workplaces. As mentioned earlier,
these intervention strategies flatten the curve subsequently delaying the peak. However, the benefits of
the cohort scenarios are reduced when more workplaces are open, increasing the transmission paths for
the entire population. We note great variability in the impacts and dynamics across the 12 states,
especially for the More Open Workplaces scenarios.
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Figure 13. 40% onsite alternating week epidemic curves for 12 representative states

4. Discussion and Conclusions

Non-pharmaceutical interventions such as school closures and social distancing have been
implemented globally to mitigate the spread of COVID-19. Given the start of the new school year,
there is a need to assess how to best resume school activities while reducing the risk of increased
transmission. We used an agent-based simulation to assess the impact of several school reopening
scenarios in combination with community level transmission that accounts for workplace in-person
restrictions.

Our results suggest that reducing the number of students by 20% (consistent with the
percentage of parents who will likely keep children out of school during the school year 2020/21 [25])
reduces the CAR by at least 5% compared to the ~100% enrolment, which would be expected in pre-
pandemic period. Scenarios where split cohorts of 40% of students return to school in non-overlapping
formats may result in more significant decreases in the CAR, potentially by as much as 75%. The split
cohort scenarios have impacts which are modestly lesser than the 100% offsite or distance learning
scenario. However, the 100% distance learning scenario averts nearly 5 million more cases and results
in almost twice as long time-to-peak interval compared to the split cohort scenario. Alternating school
cohort scenarios can also significantly avert the total number of cases by approximately 60M and 28M
for the Fewer Open Workplaces and More Open Workplaces, respectively. These split cohort scenarios
assume appropriate non-pharmaceutical interventions such as social distancing and wearing facemasks
at school. Our results indicate that implementing smaller classroom sizes and cohorts of students with
breaks between in-person school attendance (e.g., two days on, three days off) can have a major
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impact on the spread of COVID-19 both in terms of total cases and timing of the peak of a given
outbreak wave.

Increasing the number of in-person workplaces (i.e., from Fewer Open to More Open
Workplaces) increases the overall CAR for all scenarios. For the alternating school cohort scenarios,
there is a nearly five-fold increase in the CAR when moving from Fewer Open to More Open
Workplaces. Implementing both maximum work-from-home and cohorts in school along with social
distancing measures will reduce transmission, hospitalizations, and deaths. We observe significant
heterogeneity within the U.S. due to the starting initial conditions of current cases, local demographic
drivers (i.e., age distribution), and the number and type of workplaces. Areas with high incidence at the
beginning of the simulation have worse outcomes and, generally, earlier peaks. This could mean that
timing school reopening to coincide with locally lower incidence rates is important. Allowing 100% of
students to return back to school is likely to lead to additional increases of infection under the current
transmission dynamics in the U.S. and if schools reopen at the 80% or 100% level, school-age children
could generate the largest number of cases. All scenarios where schools open even at the 80% levels
will result in greater COVID-19 case rates requiring higher levels of hospitalizations, ICU beds, and
ventilators needed across the U.S. However, implementing cohorts and smaller class sizes result in
fewer cases and deaths, while providing important educational opportunities for children. Combining
these with social distancing measures including mask wearing, meeting outside, and keeping distanced
from others results in many fewer cases.

Our findings should be considered in context of several potential limitations. First, the model
assumed the same level of workplace restrictions (namely Fewer Open Workplaces and More Open
Workplaces) uniformly across all the states in the United States in order to compare the different
scenarios under similar conditions. However, there is evidence that each state has implemented
different public health actions resulting in drastically distinct operating statuses for businesses that
have reopened [36]. Therefore, incorporating the heterogeneity in state actions may be necessary in
order to better quantify the impact of school reopening scenarios on COVID-19 spread. Second, we did
not consider testing and contact tracing explicitly in the simulation. Although we assume isolation of
symptomatic individuals promptly after symptom onset, we know that effective contact tracing and
testing, in combination with hybrid school reopening scenarios and social distancing measures, will be
critical for safely reopening schools. Third, we projected epidemic trajectories through the beginning
of April 2021 in order to assess the potential impact of school reopening scenarios during the autumn
and winter months. However, several studies [37] have shown that behavioral responses to an epidemic
or pandemic are highly dependent on the perception of the severity of the disease. Thus, we expect the
behavior and compliance to change and fluctuate in the next six months as a result of new public health
orders and disease perception; however, we do not have adequate data to predict this, and therefore
assume that the same level of restriction and compliance to non-pharmaceutical interventions will
remain in place. Fourth, the population distribution in EpiCast is based upon the 2000 U.S. Census
data, to take advantage of the tract-to-tract work flow data that was last compiled then. This is a major
limitation for areas that have seen significant population changes in the last two decades, therefore, the
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simulation may be conservative in terms of the potential contacts and spread of COVID-19. Finally,
the epidemiological parameters have spatial and temporal variability during the course of the COVID-
19 pandemic. Therefore, additional studies are needed in order to quantify the impact of changing
these assumptions on the epidemic projections.

While there is uncertainty in our epidemic projections, our results are consistent with
previously published studies [18, 26-28] and are intended to serve as guideposts for deliberations
regarding the potential relative impact of different school reopening scenarios in the U.S.
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Appendix —Figures & Tables

Tables A-1 and A-2 show the key results from the modeling for the Chicago MSA region. Table A-1
shows the total number of cases, deaths, and hospitalizations for each scenario for the full simulation
period and for the four weeks around the peak of the epidemic. Table A-2 shows the cumulative and
peak incidence (and prevalence) as well as the time to peak and the total CAR for each scenario. It is
worth noting that both the 2-day and alternating week school scenarios lead to similar CARs in spite of
differences in the reduced social distancing assumptions. For Fewer Open Workplaces, ideal social
distancing results in a CAR of 5.8% and 6.5%, respectively for the 2-day and alt-week scenarios, rising
to 8.8% and 9.7%, respectively with less social distancing. More Open Workplaces results in
significantly higher CAR of 29.2% and 29.7%, respectively with ideal social distancing, and 29.7%
and 30.3%, respectively with less social distancing. Likewise, peak timing is spread out significantly
under Fewer Open Workplaces due to the impact of these partial reopening scenarios in flattening the
curve.

Table A-1. Summary of key EpiCast results for Chicago MSA region — Part 1

Workplace During Peak 4 Weeks August 15, 2020 to April 11, 2021
Scenario Name

Assumptions Cases Hospitalized = Deaths Cases Hospitalized = Deaths

Pre-Pandemic Behavior 2,159,213 60,974 3,163 | 3,400,697 99,928 6,449
Baseline 995,674 26,834 1,402 | 2,466,645 67,484 3,867
80%_OL_SD 527,005 14,501 787 | 1,876,690 52,036 2,980
80%_OL_LessSD 660,681 18,117 965 | 2,068,149 57,186 3,253

Fewer Open
40%_POL_SD_Week 82,602 2,348 138 515,501 14,401 818

‘Workplaces
40%_POL_SD_2Days 70,226 1,990 117 457,062 12,810 733
40%_POL_LessSD_Week 134,122 3,773 220 763,588 21,187 1,207
40%_POL_LessSD_2Days 119,614 3,392 185 694,637 19,392 1,084
Offsite 45,415 1,286 76 339,314 9,571 558
Pre-Pandemic Behavior 2,387,805 69,185 3,669 | 3,586,058 106,262 6,804
Baseline 1,811,617 50,808 2,587 | 3,206,736 92,648 5,679
80%_OL_SD 1,397,360 40,040 2,200 | 2,928,719 85,311 5,293
80%_OL_LessSD 1,450,481 41,658 2,274 | 2,964,029 86,382 5,316

More Open
40%_POL_SD_Week 712,232 21,100 1,270 | 2,337,759 69,556 4,361

‘Workplaces
40%_POL_SD_2Days 682,950 20,261 1,222 | 2,297,503 68,493 4,282
40%_POL_LessSD_Week 747,026 22,083 1,336 | 2,382,261 70,857 4,469
40%_POL_LessSD_2Days 717,028 21,208 1,275 | 2,341,499 69,694 4,374
Offsite 579,268 17,320 1,055 | 2,107,852 63,272 3,976
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Table A-2. Summary of key EpiCast results for the Chicago MSA region — Part 2

Peak Time to Time to Clinical
Incidence Peak Peak Prevalence Peak Attack
(Cases Incidence (Cases per 1000) Prevalence Rate

per 1000) (days) (CEVD) (%)

Workplace Assumptions Scenario Name

Pre-Pandemic Behavior 92,048 69 63.4 72 432
Baseline 38,677 97 26.9 101 313
80%_OL_SD 19,844 125 13.9 129 23.8
80%_OL_LessSD 24911 118 17.4 122 26.3

Fewer Open
40%_POL_SD_Week 3,011 188 2.1 205 6.5

Workplaces
40%_POL_SD_2Days 2,559 201 1.8 206 5.8
40%_POL_LessSD_Week 4911 188 3.5 192 9.7
40%_POL_LessSD_2Days 4,383 188 3.1 192 8.8
Offsite 1,648 174 12 178 43
Pre-Pandemic Behavior 102,256 65 71.4 70 45.6
Baseline 74,889 76 51.8 80 40.7
80%_OL_SD 54,907 83 38.5 87 372
80%_OL_LessSD 57,771 83 40.3 87 37.6

More Open
40%_POL_SD_Week 26,489 110 18.7 115 29.7

Workplaces
40%_POL_SD_2Days 25,471 117 17.9 119 29.2
40%_POL_LessSD_Week 27,952 110 19.7 115 303
40%_POL_LessSD_2Days 26,823 110 18.9 115 29.7
Offsite 21,484 118 15.2 122 26.8

Figures B-1 to B-7 show epidemic time series for 12 states for all the scenarios not shown in the main
manuscript for both Fewer Open and More Open Workplaces. Data for all other states (including the
ones shown here) are provided as supplemental material under Supplemental Files SF1-SF3.
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Figure B-1. 40% onsite 2-day epidemic curves and peak dates for 12 representative states.
(States are sorted by peak date for both scenarios.)
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Figure B-2. 80% onsite epidemic curves and peak dates for 12 representative states.
(States are sorted by peak date for both scenarios.)
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Figure B-3. Pre-pandemic Behavior epidemic curves for 12 representative states
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Figure B-4. Baseline epidemic curves for 12 representative states
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Figure B-5. 80% onsite epidemic curves for 12 representative states
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Figure B-6. 40% onsite 2-day epidemic curves for 12 representative states

SCHOOL REOPENING MODELING

32




medRxiv preprint doi: https://doi.org/10.1101/2020.10.09.20208876; this version posted October 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available
for use under a CCO license.

Offsite
Fewer Workplaces More Workplaces
350
— Florida —— Florida
—— California —— California
300 7 —— New York 1 —— New York
§ —— Texas § ' —— Texas
= 250 4 —— Georgia = \  —— Georgia
§ New Mexico § New Mexico
Z —— lllinois Z —— 1llinois
Z 200 South Dakota Z South Dakota
E — Washington E Washington
2. 150 Maine £ Maine
Z g N\ Moy
= Maryland = Maryland
z ] — lowa z | lowa
Z 100 z
= =
5 2
[=] [=]
50 4 ]
07 4
/01 1001 11/01 12/01  01/01  02/01 03/01 04/01 09/01 10/01 11/01 12/01 01/01  02/01 03/01 04/01
Date Date

Figure B-7. Offsite epidemic curves for 12 representative states
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Figure B-8 shows the source of infection as a percentage aggregated at the national-level for all the scenarios for both Fewer Open and
More Open Workplaces.
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Figure B-8. Source of infection for scenarios aggregated for all states.
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Figure B-9 shows the total number of cases, hospitalizations, and ICU beds by age group for all the national-level scenarios for More
Open Workplaces.

National Hospitalizations by Age Group by Scenario
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Figure B-9. Total cases, hospitalizations, and ICU beds by age group for all the national-
level scenarios for More Open Workplaces.
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Figure B-10. Total ventilators used by age group for all national-level scenarios.
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Inside the Herculean effort to anticipate the path of the virus and mitigate

its impact

“The outbreak should follow the same process in every community,” says Los Alamos scientist Ben
McMahon. “At least in theory. It should get worse and worse until the community realizes they have to get
serious about isolating, and then it should fall away quickly. The epidemic curve is really a learning curve.”

But the COVID-19 outbreak is far from a textbook event, and McMahon, a key player in Los Alamos’s
comprehensive effort to model the pandemic, is knee-deep in all the ways the learning curve can be
distorted. In a joint enterprise to model the pandemic for better-informed policymaking, Los Alamos
shares detailed weekly reports with three other national laboratories, and every single week—even after
the better part of a year—surprising, fundamental new information is still coming to light. For a disease
that stubbornly carves out an exception to nearly every rule the experts try to attach to it—from the
symptoms it produces to the effectiveness of the antibodies its survivors retain—McMahon and his
colleagues strive to assemble the most believable set of “facts” possible and feed them to a computer to
answer one question: What is likely to happen next?

“The trouble is”—McMahon has to interrupt himself here—“well, one of the many troubles is:
Susceptibility varies greatly depending on age, sex, and certain preexisting conditions. That means some
people are substantially less likely to die, get tested, or even show any symptoms, even though they may
be every bit as likely to transmit the virus.” With something like Ebola, everyone is suitably terrified, young



and old, and the learning curve is very steep: isolate or die. With COVID-19, the weight of the message is

considerably more fragmented.

Uncertainties about both the contagion itself and the personal and societal behaviors that contribute to
either its spread or its containment greatly complicate researchers’ efforts to predict the course of the
pandemic. But that information is absolutely crucial. If policymakers know the potential landscape of
tomorrow, they will have a much better idea of what to do about it today.

What will happen

Los Alamos has a number of COVID-modeling efforts underway. The most widely shared of these is on its
public website and featured on the Centers for Disease Control (CDC) website as well, due to its track
record for accuracy. The model spans the globe, country by country, and the United States, state by state.
It is produced and managed by a team of about 20 Los Alamos specialists, including computer scientists,
bioscientists, mathematicians, economists, and others; statistician Dave Osthus leads the team.

“Our model produces forecasts, not projections,” Osthus explains. “Whereas a projection predicts what
would happen if various strategies were put in place or various circumstances came to pass, a forecast
directly predicts what will happen based on what is already happening.” That doesn’t mean it ignores
policy interventions, such as stay-at-home orders—far from it. But rather than trying to figure out how
much of a difference they ought to make, the model examines how much of a difference they are already
making or how much difference they have already made elsewhere. The result is an ultimate best-guess at
the future—cumulative confirmed cases and deaths—driven by real-world data.

Unlike flu, there is no historical data on COVID-19—no benefit of
hindsight.

Real-world data, however, are not especially straightforward. Actual cases are sharply different from
confirmed cases; confirmed cases result from testing, and testing is not uniformly accurate. And even if all
COVID-19 tests were perfectly accurate, there would still be a huge question mark when it comes to who is
getting tested. How many people? Which ones? People who are already sick? People who visit a clinic for
some other reason? Or a cross section of the public at large? There is tremendous variation in procedures
from state to state and even county to county, since much of this data is obtained by public health
departments at the county level. The Los Alamos statistical model has to deal with these challenges and
generate the most reliable prediction possible anyway.

To do that, the model has to learn; it has to assimilate large amounts of data and figure out how to
recognize trends, broken down by region. It also has to learn from its mistakes. As events unfold and new
data are gathered from one week to the next, the model must attempt to improve itself.

Fortunately, Osthus had already been working with just such a machine-learning model, called Dante, to
predict recent flu seasons. In a contest sponsored by the CDC for the 2018-2019 flu season, 24 teams
submitted model output, and Dante’s predictions came closest to matching reality. Osthus and others
reworked it for the COVID-19 pandemic.

However, COVID-19 and flu have two important differences, in terms of modeling. The first is the fact that
people have been dealing with the flu for ages, and there is a lot of valuable historical data to work with,
but not for COVID-19—there’s no benefit of hindsight. All the data on COVID-19 comes from the current
pandemic in real time. To put it bluntly, the forecast gets more accurate if more people get sick and die.

The other major difference between the current pandemic and the flu stems from individual behavior.
Because flu is so familiar, the range of human behavior is not very wide. A relatively consistent fraction of
infected people will go to work anyway, despite feeling sick. A relatively consistent fraction of people will
see a doctor. A relatively consistent fraction of people will get a flu vaccine each year. It is through this
similarity from season to season that a gigantic source of uncertainty—human behavior—can be tamed.
But with COVID-19, individual behaviors are critical, and there is no historical basis to justify anything



modelers might assume. Hand washing, face masks, social distancing, restricted travel—such things vary
to a large degree and are extraordinarily difficult to predict or even assess after the fact. How often did
residents of Hawaii or Ohio wash their hands in the past month? How seriously did they adhere to social
distancing mandates?

Without knowing the answers to these kinds of questions, it’s difficult to predict the future. It’s even more
difficult to determine which interventions would be the most effective. But just because individual
behavior is difficult to quantify doesn’t mean Los Alamos scientists can’t find a way to model it.

What would happen

A trio of cause-and-effect, rather than statistical, Los Alamos models is intended to address what-if
questions. What would happen if schools ramp up onsite learning? Or if non-pharmaceutical
interventions, such as face masks, social distancing, and hygiene measures, were intensified (or reduced)?
Or if a vaccine were distributed in a particular way?

Perhaps the most straightforward of these models is EpiGrid, an epidemiological model that tracks the
geographic spread of a disease by breaking the landscape into a connected grid of 10-kilometer-square
regions, rather than administrative units like countries, states, or counties. Originally developed as a risk-
assessment tool for bioterror attacks and natural pandemics, EpiGrid is comprehensive and versatile,
making do with imperfect data. Scenarios have been developed for many countries, pathogens, and
assumed responses.
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Phylogenetic modeling of SARS-CoV-2 genome sequences reveals the relatedness of groups of infections over time. Each
horizontal line represents a viral lineage and terminates at the time when that genome was sampled. Lines that end in red circles
are from New Mexico cases; tight groupings of red circles, therefore, suggest clusters of New Mexico infections with a common
source, possibly a single introduction into the state followed by transmission within it. However, the large number of New Mexico
cases widely separated on this figure suggest a great many introductions arriving at different times (from the Mountain West as

well as elsewhere in the country and the world).

EpiGrid accounts for details of the infectious agent itself (How long does it incubate? How is it transmitted
—droplets, contaminated water, mosquitoes, etc.? Are asymptomatic or pre-symptomatic people
contagious? Can people who have recovered be infected again?), the progression of the disease



(How many people are susceptible? Exposed? Infected? Seriously ill or hospitalized? How many have
recovered? How many have died?), the modes of treatment (Antivirals? Vaccines? Other treatments?),
and societal actions (Are quarantines in place? Are masks required? Are schools open?).

“Los Alamos has been doing epidemiological modeling for decades, starting with HIV,” says Paul
Fenimore, EpiGrid project leader. “It’s a capability we were very wise to develop.” For the sudden
emergence of COVID-19, Fenimore and his colleagues strive to make EpiGrid as reliable as it already is for
infections like plague or cholera. So they work the problem in both directions: in January, they forecast
February, and in February, they retroactively assess what did and didn’t work in the forecast in January.

Another key model, EpiCast, has similarly deep roots—but from a completely different kind of soil. Rather
than being built from the ground up for epidemiology, EpiCast was adapted from an earlier materials-
science model designed to support nuclear weapons technology. Just as individual atoms contribute to
the nature of a material, individual infected people contribute to the progression of an epidemic, and the
modelis structured to treat each element (atoms or people) in an agent-based fashion, tracking its
influence and that of its neighbors to their ultimate global effects. Whereas EpiGrid typically covers large
regions in aggregate (e.g., the eastern half of the country) with medium-grain resolution, EpiCast resolves
down to the census-tract level, consisting of only about 2000 individuals, capturing their contact
networks and daily travels, as well as any pandemic-related policy restrictions on either.

Not surprisingly, operating a model with such resolution requires a powerful computer. While EpiGrid can
run on a laptop, EpiCast requires a supercomputer—and Los Alamos has several. In fact, Los Alamos has
long been a key player nationally in high-performance computing (HPC) across the board, always keeping
up with cutting-edge hardware, expert personnel, and scientists studying both the complex systems that
require HPC for their simulations (e.g., climate models) and the science of HPC itself (such as minimizing
error rates and applying different algorithmic approaches). Los Alamos HPC capabilities are currently
being shared across a broad consortium of national laboratories and government agencies, universities,
and technology companies to make supercomputers—which are normally prohibitively expensive for
smaller organizations—freely available to researchers working to combat the virus with computationally
intensive tasks such as drug discovery.

With Los Alamos’s own agent-based HPC pandemic model, the results are especially credible, since the
“agents” are essentially actual Americans: EpiCast incorporates real census counts combined with
accurate demographics, school and workforce participation, and public-transit commuter information,
among other key parameters. In addition, a key differentiator between EpiCast and other similar efforts is
its ability to categorize workers within different industry sectors. This feature proved criticalin
understanding and projecting the pandemic in the United States by taking into account the variability in
work-from-home policies affecting different segments of the workforce. The effects of changing
mitigation strategies or individual behaviors thus percolate through an uncommonly realistic
representation of the American populace. It is here that Los Alamos scientists Tim Germann, Carrie
Manore, and Sara Del Valle can model those difficult-to-model human behaviors and analyze which ones
are most effective in slowing the pandemic. As a result, EpiCast has been able to meaningfully assess the
impact of reopening schools and workplaces.

What does happen

Inferring the movement of the virus from epidemiological data, such as interviews with infected people to
pinpoint where they have been and with whom they have had contact, results in an incomplete picture,
making it difficult to calibrate models with real-world data. Los Alamos scientists Emma Goldberg,

Ethan Romero-Severson, and Thomas Leitner are therefore tracking the movement of the virus with
direct analyses of its genome as it migrates through the human population. Small, natural mutations are
always happening to individual viral particles, and they happen at a fairly steady rate of approximately
one or two nucleotides (basic elements of genetic code) every one or two weeks. That stream of inherited
changes makes it possible to draw conclusions along the lines of whether this person could have acquired
SARS-CoV-2 from that source (person, hospital, city, etc.) over such and such a timeframe when the viral

genomes are so different.



The epidemic curve is really a learning curve.

By tracing what the mutations show about the relatedness of infections, i.e., the phylogenetics—a
capability Los Alamos previously advanced to address the evolution of HIV infections—the scientists can
help identify how and when the virus traveled from one region to another. This makes it possible to
reliably tease apart whether a resurgence of cases in one area was caused by community spread within
that area or by reinfection from the outside. The answer matters: if it’s the former, then it might make
sense to double down on isolation measures, such as closures and social distancing; if it’s the latter, it
might be more consequential to restrict interstate travel. In this way, real-world genomic data can be
used to identify what happened in specific regions at specific times—and also validate (or contradict)
models such as EpiCast, allowing them to more accurately extrapolate and predict the direction of the
pandemic across the country.

“Of course, we need up-to-date genome data to make up-to-date inferences,” says Goldberg. “That’s why
we’re coordinating with the University of New Mexico, TriCore Reference Laboratories, and the New
Mexico Department of Health to continue to get viral genomes as more infections are confirmed in state.”
She and Romero-Severson are performing sophisticated statistical analyses to pull patterns from this in-
state data, combined with other publicly available genomic data shared from across the globe. Such
patterns reveal actionable characteristics of the movement of the virus—for example, which groups of
cases trace back to a single introduction into New Mexico and how the number of such introductions is
changing over time.

Meanwhile, Leitner is comparing current SARS-CoV-2 phylogenetics with those of other recent
coronavirus outbreaks, including SARS-CoV and MERS-CoV, and with other types of resident coronavirus
infections in animals, such as bats. In addition, a user-friendly web interface for genomic science, built by
Los Alamos bioinformatics specialist Patrick Chain and his colleagues, is now being used to help automate
the reconstruction of SARS-CoV-2 genomes for inclusion in phylogenetic trees and public genome
repositories. The system analyzes the population of viral genomes found in a sample from a COVID-19
patient and identifies specific mutations and their prevalence. There is also a feature for evaluating how
effective current high-quality viral-RNA-based COVID-19 diagnostic tests are at recognizing emerging
genetic variants. And all of this work—phylogenetic analysis, pattern extraction, comparative studies,
genome reconstruction, and diagnostic-test validation—capitalizes on Los Alamos computing technology
and expertise.

In addition to geographic, phylogenetic, and behavioral aspects, a final key element of the Los Alamos
modeling effort is systemic and capitalizes on a major research initiative from the previous decade. From
2003 to 2010, Los Alamos scientists modeled the nation’s critical infrastructure—things like power,
transportation, and, of particular relevance now, public health—to expose their interdependencies and
learn how to maintain them in a crisis. When the COVID-19 pandemic struck, Los Alamos scientist Jeanne
Fair and fellow researchers Rene LeClaire, and Lori Dauelsberg—all of whom were key players in the
critical-infrastructure study—responded quickly to restore that capability and adapt it to the current
pandemic.

Models have to accept flawed data and generate the best possible
prediction anyway.

As part of this process, they had to rework an earlier epidemiological model of an influenza pandemic
scenario so that it would properly account for the very different scenario brought on by a coronavirus.
The result, known as MEDIAN (Modeling Epidemics for Decision support with Infrastructure ANalysis), is a
suite of system-dynamics models designed to identify the key drivers of the pandemic. It explores the
large uncertainties pertaining to the disease itself—things like incubation period and mortality rates—
together with the way society’s infrastructure systems function to make things better or worse.



For example, one often hears about the danger of simply “overwhelming the healthcare system,” but the
healthcare system is a complicated animal. People are routed among home care, physicians’ offices,
hospitals, intensive-care units, emergency rooms, and long-term care facilities. Medical services can
include multiple types of COVID-19 testing and treatment, and the selection of services could have
significant impacts on the trajectory of the pandemic. The MEDIAN team is looking at which knobs to turn
to most affect the outcome, and it has been tasked in particular with understanding the uncertainties
associated with testing and diagnostics to help identify an optimal testing strategy.

What should happen

COVID-19 is a killer, and Los Alamos is doing everything it can to provide life-saving scientific guidance for
policymakers. The four-lab collaboration between Los Alamos, Argonne, Sandia, and Oak Ridge national
laboratories has been fruitful in this regard. Just as Los Alamos is particularly well positioned to provide
expansive modeling and diagnostics, partner labs have their own specialties that collectively contribute
to overall situational awareness. Ben McMahon, who continues to learn everything he can to help
accelerate the nation’s learning curve, is paying close attention.

“Weekly reports between partner labs reveal an ever-expanding, ever-sharpening picture,” says McMahon,
“but they also deliver a healthy dose of humility. They increase what we know and refocus our attention
on everything we don’t.”

Within Los Alamos’s home state, this knowledge—incomplete though it may be—is making a big
difference. Throughout the crisis, Laboratory experts have been in regular contact with New Mexico state
officials, hospital representatives, mental health specialists, regional economists, and other policy
professionals. Typically, two or three conference calls per week allow vital information to be shared as
soon as it is discovered. Additionally, state officials can get scientific evaluations from Los Alamos on the
questions that arise day to day, such as whether a new cluster of cases is likely to represent a “real”
problem or a statistical blip, or how best to distribute the available COVID-19 tests. Major policy
announcements or changes are made only after extensive discussions with a diverse set of experts,
including Los Alamos scientists from many disciplines.
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Can schools be re-opened safely? Shown here are the projections of an EpiCast model from August 2020, presenting the
anticipated number of new cases daily (vertical axis) versus time, assuming different approaches to school re-openings.
Compared to a business-as-usual school reopening (tall peaks), reduced onsite learning significantly diminishes peak new cases—
flattening the curve to reduce the peak burden on the healthcare system. Reducing to a plan with 40 percent of students onsite at
one time (two cohorts, with two days per week for each) cuts new cases down to a rate much closer to that obtained by 100
percent remote learning. The model takes into account the initial conditions in each state (at the time the model was run) and the

regional demographics, including how many people work in industries that are still operating onsite during the pandemic. This



accounts for the state-by-state differences. As a result, Texas, for example, would see an earlier peak than most other states and

New York a later one. New Mexico, home to Los Alamos, would peak in between.

“Los Alamos serves the entire nation with its resources, capabilities, and expertise, but the partnership
between Los Alamos and the state of New Mexico has been extraordinarily productive for everyone
involved as well,” says Kirsten McCabe of the Lab’s National Security and Defense Program Office. “We are
fortunate to be able to interact with the state government and Presbyterian Healthcare Services and to
have a proactive governor making informed decisions to manage the crisis. Critical information flows
freely in both directions.”

Exponential change goes in both directions, too. If one infected person infects five more, then 25, then
125, the cases will skyrocket. But if one infected person infects one-tenth as many—0.5 on average, say—
then exponential growth reverses and becomes exponential decay: 20 cases become ten, ten become
five, and any new flare-up dwindles away. If model-informed policies can put the population firmly in the
exponential-decay domain, then careful, controlled attempts to restore particular elements of normal life
can be attempted relatively safely. With great vigilance to rapidly isolate and contact trace new cases as
they appear, the prevailing condition of exponential decay can be relied upon to do its thing.

“The math works with us or against us,” says McMahon, “but it’s a very fine line. It all hinges on having
extremely accurate models and acting on the best possible information.”

Like many of his pandemic-modeling colleagues at Los Alamos and around the world, McMahon feels
frazzled. But there is no rest. Until scientists know much more about this virus, the weight of the world
will continue to hang on a select few, including healthcare workers, elected leaders, and yes, modelers,
who continuously reshape shifting uncertainties into the most likely truths. They are, after all, the ones
specifically entrusted with advancing our learning curve. LDRD
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COVID-19

December 17, 2020

Los Alamos National Laboratory (LANL), which operates under the purview of
the National Nuclear Security Administration (NNSA), is home to a variety of
supercomputers that are typically used for nuclear weapon simulations and
related tasks. This year, however, LANL has been spending much of its
supercomputing time fighting a different national security threat: COVID-19.

Over the course of the year, LANL has pitted its supercomputing_prowess
against every aspect of the pandemic, from modeling the virus and its spread
to investigating various pharmaceuticals that might mitigate or prevent
infections. Now, LANL finds itself facing what may be one of the final
challenges posed by SARS-CoV-2: optimizing distribution of the new vaccines
that may signal the beginning of the end of COVID-19.

The new vaccines from Pfizer
and Moderna have been
deemed highly effective by the

FDA; unfortunately, doses are 9 Los Ala mos

likely to be limited for some time. NATIONAL LABORATORY
As a result, many state e o g

governments are struggling to

weigh difficult choices — should

the most exposed, like frontline workers, be vaccinated first? Or perhaps the
most vulnerable, like the elderly and immunocompromised? And after them,
who's next?



LANL was no stranger to this kind of analysis: earlier in the year, the lab had
used supercomputer-powered tools like EpiCast to simulate virtual cities
populated by individuals with demographic characteristics to model how
COVID-19 would spread under different conditions.

“The first thing we looked at was whether it made a difference to prioritize
certain populations — such as healthcare workers — or to just distribute the
vaccine randomly,” said Sara Del Valle, the LANL computational
epidemiologist who is leading the lab’s COVID-19 modeling efforts. “We
learned that prioritizing healthcare workers first was more effective in reducing
the number of COVID cases and deaths.”

The lab’s modeling results are not merely an academic or aspirational
exercise. Throughout the year, state and federal policymakers paid close
attention to LANL's HPC-enabled epidemiological modeling, and the results
were directly used to guide policy decisions. The vaccine modeling is no
different — in fact, the lab says that the scenarios are being developed in close
coordination with local, state and federal officials. This is particularly true of
New Mexico, LANL's home state.

“Our ongoing collaboration with the modeling team at Los Alamos National
Laboratory continues as we plan and refine the best ways to distribute the
vaccine in a safe, equitable and effective way,” Matt Nerzig, a spokesman for
the New Mexico governor’s office, told the Santa Fe Reporter. “From the start
of the pandemic, we have made every effort to rely on the best possible data
and analysis to fight the virus.”

While the vaccines are extraordinarily promising, the researchers caution that
the models show they are not yet a silver bullet for the pandemic — and may
not be for some time.



“These models very clearly illustrate that, for many months, the vaccine alone
isn’'t going to be enough to keep us safe,” said Ben McMahon, a mathematical
epidemiologist at LANL. “Given the limited vaccine supply and the fact that
immunity builds steadily for several weeks after vaccination, restrictions such
as mask wearing, frequent hand washing, and social distancing will still be
required for the next several months to slow the spread of the virus and flatten
the curve.”

Accordingly, the good news about vaccination comes with a plea.

“‘Because we don’t see the immediate impact of our actions, it's hard
sometimes to understand that our behaviors make a difference,” McMahon
said. “But they make a tremendous difference. By wearing your mask, social
distancing, and, when it's available, getting the vaccine, you can do a lot to
protect yourself and others from getting sick.”

This article can be found at At Los Alamos National Lab, Supercomputers Are Optimizing Vaccine Distribution

(hpcwire.com)



https://www.hpcwire.com/2020/12/17/at-los-alamos-national-lab-supercomputers-are-optimizing-vaccine-distribution/
https://www.hpcwire.com/2020/12/17/at-los-alamos-national-lab-supercomputers-are-optimizing-vaccine-distribution/
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Distributing a highly anticipated new
release: The COVID-19 vaccine

December 16, 2020

Most holiday seasons, discussion of urgent deliveries conjures images of UPS drivers
rushing to doorways with Amazon packages, long lines at the post office, and Santa’s
sleigh landing on snow-topped roofs. Not this year. In December 2020, “urgent delivery”
meant one thing: the COVID-19 vaccine rollout.

After months of anticipation, the vaccine has been delivered to every state in the nation,
including New Mexico, which received its first shipments on Dec. 14. But vaccinating
more than 250 million adults in the United States is a monumental task that requires
careful planning and assessments of different approaches to distribution.

At Los Alamos, scientists are using mathematical models and computational simulations
enabled by LANL'’s supercomputing capabilities to understand how best to distribute

the COVID-19 vaccine to minimize impacts on the healthcare system and the overall
population. This information can help decision makers determine which mitigation
strategies to implement and how to safely reopen various parts of the community as the
vaccine is rolled out.

To understand the different outcomes based on how the vaccine will be distributed,
researchers are looking at various what-if scenarios.

For example, the model takes into account variables such as the percentage of the
population that gets the vaccine, the vaccine’s effectiveness, the different populations
that will get the vaccine first (such as healthcare workers and seniors), school re-
openings, business re-openings, etc. Each of these variables impacts how the disease
will spread through a community. The model can also look at how the COVID-19 case
and death rate, for example, will be affected if 60 percent of the population is vaccinated
with a vaccine that is 90 percent effective and some parts of the community—such as
schools and certain businesses—reopen.

“The first thing we looked at was whether it made a difference to prioritize certain
populations—such as healthcare workers—or to just distribute the vaccine randomly,”
said Sara Del Valle, a computational epidemiologist and leader of the COVID-19
modeling team. “We learned that prioritizing healthcare workers first was more effective
in reducing the number of COVID cases and deaths.”

One of the things that sets LANL’s models apart from others like them are their level of
granularity. Unlike other models, those developed at LANL can drill down to the county
level of every state in the nation. By incorporating explicit information at the county
level, such as demographics (age, gender, household size) and even different industries

1



in which people work (healthcare, education, public transportation, etc.), it can give a
clearer picture of the impact of the vaccine on a community and different populations
within that community.

The various scenarios that the models run were developed in collaboration with local,
state, and federal government officials as they effectively plan for vaccine distribution
and complementary mitigation strategies.

“These models very clearly illustrate that, for many months, the vaccine alone isn't
going to be enough to keep us safe,” said Ben McMahon, also a mathematical
epidemiologist who heads up LANL’s part of the DOE’s multi-lab National Virtual
Biotechnology Laboratory modeling effort to tackle COVID-19. “Given the limited
vaccine supply and the fact that immunity builds steadily for several weeks after
vaccination, restrictions such as mask wearing, frequent hand washing, and social
distancing will still be required for the next several months to slow the spread of the
virus and flatten the curve.”

Both Del Valle and McMahon stress that every person has an important role to play

in slowing the disease’s spread. “Because we don’t see the immediate impact of our
actions, it's hard sometimes to understand that our behaviors make a difference,” said
McMahon. “But they make a tremendous difference. By wearing your mask, social
distancing, and, when it's available, getting the vaccine, you can do a lot to protect
yourself and others from getting sick.”

The models also show that it will be several more months before things start to return
to some semblance of “normal,” but, as Del Valle said, “There’s a light at the end of
the tunnel.” And that, for most everyone, is the most anticipated and welcomed gift the
holiday season.
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1/14/2021 COVID-19 vaccine critical but it's not silver bullet | Commentary | santafenewmexican.com

https://www.santafenewmexican.com/opinion/commentary/covid-19-vaccine-critical-but-its-not-silver-
bullet/article_033e8b90-4f8e-11eb-83a3-133af6a2c895.html

COMMENTARY SARA DEL VALLE AND BEN MCMAHON
COVID-19 vaccine critical but it's not silver bullet

By Sara Del Valle and Ben McMahon
Jan 5, 2021

After months of anticipation, the COVID-19 vaccine has been delivered to every state in the nation
and inoculations are underway. But vaccinating more than 250 million adults throughout the
country is a monumental task that requires careful planning and assessments of different

approaches to distribution — without which herd immunity can take longer to achieve.

At Los Alamos National Laboratory, we’re using mathematical models and computational
simulations enabled by the laboratory’s supercomputing capabilities to understand how best to
distribute the COVID-19 vaccine. And what we’ve learned is: While the vaccine is a critical weapon in

fighting this virus, it’s not a silver bullet — at least not yet.

Our models look at individual communities based on government data. To understand the different
outcomes based on how the vaccine will be distributed, we create various what-if scenarios that were
developed in collaboration with local, state and federal governments to help them effectively plan for

vaccine distribution and complementary mitigation strategies.

Our models can drill down to the county level by incorporating explicit demographics (age, gender,
household size, etc.) and even different industries in which people work. This level of granularity —
something unique to our models — gives us a clearer picture of the impact of the vaccine on a

community and different populations within that community.

We ran multiple simulations based on various scenarios, including vaccine effectiveness, allocation,
and prioritized. We also simulated the percentage of people willing to get vaccinated, which will have
a significant impact on the spread of the disease. Based on surveys of adults, 40 percent to 60
percent have said they are willing to get the vaccine, so we simulated the outcome based on that
range. We also factored in variables such as school attendance, mobility data and public interactions

in various businesses.

https://www.santafenewmexican.com/opinion/commentary/covid-19-vaccine-critical-but-its-not-silver-bullet/article_033e8b90-4f8e-11eb-83a3-133af6a2... 1/2



1/14/2021 COVID-19 vaccine critical but it's not silver bullet | Commentary | santafenewmexican.com

So when we did all this, what did we learn?

Consistently, these models illustrate that, for many months, the vaccine alone isn’t going to be
enough to keep us safe. Due to the limited vaccine supply and the fact that immunity builds steadily
for several weeks after vaccination, our models show that continuing to limit business activity will
allow communities to flatten the curve and subsequently increase the potential impact of the

vaccine.

Furthermore, they show that opening schools at full capacity can increase the risk of COVID-19
spread, while the hybrid-learning scenario (40 percent of students go to school in person for two
days and the other 40 percent go the other two days) in combination with limited business activity
reduces risk, enables in-person education and increases the impact of the vaccine by flattening the

curve.

Our models are not foolproof. Being able to account for uncertainties in people’s behaviors and the
spread of a new pathogen in a complex model is extremely challenging — and something we spend
significant time trying to understand. But the models are still valuable in helping us to quantify the

potential outcomes of different what-if scenarios.

And what they show us is that it’s critical for everyone to recognize the important role they play in
slowing the disease’s spread. Because we don’t often see the immediate impact of our actions, it’s
hard sometimes to understand that individual behaviors make a difference. But they do. By wearing
masks, social distancing and, when it’s available, getting the vaccine, we all can do a tremendous

amount to protect ourselves and others and keep the virus at bay.

Sara Del Valle is a mathematical epidemiologist and leader of the COVID-19 modeling team at Los Alamos
National Laboratory. Ben McMahon is a mathematical epidemiologist who heads up Los Alamos’ part of the
Department of Energy’s National Virtual Biotechnology Laboratory modeling effort to tackle COVID-19.

https://www.santafenewmexican.com/opinion/commentary/covid-19-vaccine-critical-but-its-not-silver-bullet/article_033e8b90-4f8e-11eb-83a3-133af6a2...
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EpiCast Overview

* An agent-based model used to simulate the
spread of disease throughout the U.S.
population

— 2000-person communities in 65,433 census tracts

— Explicit model of geography, demographics (i.e.,
age), worker/household/school/ community
contacts, and mifigations

— Captures workforce by 3-digit NAICS
« Data sources

— U.S. Census Data

— U.S. Department of Transportation
—-STP64 Commuter Data
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Vaccine Modeling Assumptions
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Modeling Assumptions

US Social Distancing Compliance

 Schools E W= =

— 100% open 5-days/week, 80% attendance 5-days/week, hybrid ; |
(two non-overlapping cohorts of 40% each attending school 2- ‘ L
days/week ), closed (virtual learning) Biinr,

— Social distancing compliance is based on unacast scores (see | i
below) |

SD Compliance
-

1.000 4.500
» Social Distancing Compliance
— Unacast scores (mobility data) at the county level -> Blue
(higher compliance); dark orange (lower compliance)
— All scenarios assume reduction in contacts due to social
distancing and facemask mitigations implemented in all settings 7
(e.g.. school, work, neighborhood)
° ° ° 3 Reduction in Contacts .Long
° lel‘l'q‘l'lons W or e S tatls due to social Distancing %D,ll,i?;'ie
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Modeling Assumptions Cont.

* Workplaces T

NAICS Sector | Telework
; Code

— Essential/non-essential businesses (based on , . )
Agriculture & Mining 3 11 | 8.1%

industry classification) and approximate Utilities & Construction 2123 | 327%
compliance based on Public Health Orders s tene -
Wholesale § 42 | 26.5%

Retail 44-45 26.5%
Transportation & Warehousing | 48-49 32.7%
Information 51-52 80.4%

- Phose 3: More Workplgces Open ( /green) Finance, Insurance, & Real Estate | 52-53 81.1%
o ) ) . ) . Professional and Business Services | 54-56 71.6%
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A Leisure & Hospitality § 71-72 | 20.3%
construction) Other Services T
Government & Administration | 92 57.0%
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— Phase 2: Fewer workplaces open (red)
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* All household contacts are
increased by 40%

Daycares are assumed to be
open

*School-age children are
assumed to mix with other
children within their
neighborhood at a reduced
rate

*Neighborhood transmission is
reduced by 50% or 25%
(depending on Phase 2 or 3,
respectively) to account for
social distancing measures
and facemasks

eStudents are stratified into

two non-overlapping groups
of 40% each

eStudents are assumed to go
to school for only 2 days a
week or alternating weeks
under social distancing
restrictions

*School-age children are
assumed to mix with other
children within their
neighborhood at a reduced
rate

e School tfransmission is
reduced by 50% or 25%
(depending on Phase 2 or 3,
respectively) to account for
social distancing measures,
facemasks, mixing groups,
efc.

School Scenarios Description & Assumptions

Hybrid Learning (Schools Full or 80% Onsite Learning
Open) (Schools Open)

eSchools are assumed o be
opened 5 days a week

Either 100% or 80% of the
student population is
assumed to attend in person
(80% assumption due to
surveys indicating 20% of
parents may not send their
children back to school)

e School tfransmission is
reduced by 50% or 25%
(depending on Phase 2 or 3,
respectively) to account for
social distancing measures,
facemasks, mixing groups,
etc.

Los Alamos National Laboratory
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NM: Impact of Business Activity (Phase 2 vs. Phase 3)

NM State Level Epi Curves--Phase 2 and Phase 3 Comparison of Closed&NoVaac

3,500 — ii:EiZZZZ‘:EZXZEZ
30001 So what?
Even if schools implement virtual
2500 learning, the level of business activity
Phase 3 & Virtual will impact disease spread
2 Learning
2 No Vaccine
g >0 Limited business activity (Phase 2)
& reduces social contacts, which in turn
2 reduce overall risk of infection and
2: 1,500 - cases
A Phase 2 & Virtual
1,000 Learning Clinical Attack Rate
No Vaccine
 Phase 2: 11%
<00  Phase 3: 21%
0_

12501 01-01 02-01 03-01 04-01 05-01 06-01 07-01 08-01
Date
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NM: Impact of Vaccine & School Options (Phase 2)

Phase 2 New Mexico: Different School Reopening Scenarios with Vaccination VS. No Intervention (Baseline)

10,000 - Phase 2 —— Baseline
—— 80% School
. —— Hybrid School
Baseline yord 5choo
. —— Closed School
No Vaccine
8,000 -
E 80% School
2 6,000 Attendance &
g Vaccine
Q
o
2
w2
5 40004
2 4,000
=
S
a
Hybrid Learning
2,000 1 & Vaccine
Virtual Learning
o & Vaccine
12-01 01-01 02-01 03-01 04-01 05-01 06-01 07-01 08-01
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Date

So what?

The Phase 2 baseline scenario
corresponds to limited business activity,
100% school attendance, and vaccine
distribution starting mid December

The vaccine will have limited impact, if
schools reopen at 80% or 100%
attendance levels while in Phase 2

The hybrid and virtual learning scenarios
significantly reduce disease spread and
increase the impact of the vaccine

Clinical Attack Rate
* Baseline (no vaccine): 32%
« 80% School (vaccine): 27%
« Hybrid (vaccine): 13%
* Virtual (vaccine): 11%




NM: Impact of Vaccine & School Options (Phase 2)

—— P2_Hybrid NoVacc
\ P hqse 2 — P2 Hybrid-Vaccination
| P2 Closed Vaccination
« A [Vl|Y \/ A
1,750 1 Y Y\ y i
;‘ | *3' So what?
500 Hybrid Learning Phase 2 (limited business activity) can help
’ / & No Vaccine reduce disease spread, even in the absence
of vaccine
2 1,250 1
g (] L] L] L] ° o L]
< Hybrid learning in combination with vaccine
g o0 Hybrid Learning & reduces risk while enabling in-person
Q B T ° °
& Vaccine education
2
g /
z L] L] L] L] L]
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500
The impact of vaccination can be seen
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NM: Impact of Reduced K-12 Transmission (30%)
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So what?

Reduced transmission in K-12 children
reduces the clinical attack rate from 23%
to 21% (80% scenario) and from 9% to 7%

(hybrid scenario)

Opening the schools at 80% capacity,
even under reduced transmission among
K-12 children, can lead to significant
spread

The hybrid learning scenario can flatten
the curve by reducing spread and
increasing the potential impact of the
vaccine




NM: When Can We Reopen Schools at 80% Post

Virtual?

. . o 0
Phase 2 New Mexico: Closed School VS. Reopen School in Febuary with 80% School Attendance Phase 3 New Mexico: Closed School V8. Reopen School in April with 80% School Attendance

.  Closed Feb80% —— Closed School
’ P h a S e 2 —— Closed School 4,000 P h d S e 3 Closed_Aprs0%
Reopening
6.0001 Schools in April
Vaccine
. L 3,000
5 50001 Reopening Schools g
2 o S
S in February 2
= ° <
£ £
g E ]
. 2,000
E 3,000 >
= i
A 8
2,000 1 1,000 1
1,000 1
01 o
1201 01-01 02-01 03-01 04-01 05-01 06-01 07-01 08-01 1201 o1-01 02-01 03-01 o4-ol 0>-01 0601 0701 0801
Date Date

So what?

Reopening schools (post virtual learning) at 80% capacity in either February (Phase 2) or
April (Phase 3) can lead to secondary waves of infection

Given the limited vaccine supply and the time it takes to develop immunity, additional
restrictions will be needed to reduce spread and increase the impact of the vaccine

Los Alamos National Laboratory 12/21/20 | 13




U.S. Phase 2: Impacts of Vaccination and Reopening

Schools for 12 States

Representative States: P2_Hybrid Mar80%_Vacc

Florida
California
New York
Texas

1]

Georgia
Illinois

=]
S

So what?

What happens if schools move from
hybrid learning to 80% attendance 5-
days a week starting March 1st

Daily New Symptomatic Cases per 100K
&
(=]

o
12/01 01/01 /01 03/01 0401 0s/01 06/01 o701 08/01 . . . te
Date Spatial differentiation for 12
R representative states is evident as a
00 1 South Dikos result of local trends and demographics
é — ‘ashington
S Maine
g 400 7 Maryland
é ' lowa
g u Reopening schools 5 days a week at
g ‘ 80% capacity is likely to lead to
220 secondary waves of infection
5
= 1001
[=]
o
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Reopening K-12 full time at full or 80% capacity before vaccine is fully rolled out puts
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NM: Cases Averted (Phase 2 vs Phase 3)

and 30-64)

P?:;: 2 New Mexico Cases Averted by Age Phase 3 New Mexico Cases Averted by Age So what?
P — - Sge ey ] Limited business activity (Phase 2) and
300K =ia ] 250K 518 hybrid school avert significant number of
F m 30.64 1929 cases (~300K for NM)
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U.S.: Cases by Age (Phase 2 vs Phase 3)

Phase 2 US Cases by Age by Scenario
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So what?

The 0-18 age group will have the
most cases across all scenarios
followed by 30-64 age group




U.S.: Source of Infection (Phase 2)

Phase 2 Source of Infection
100

Business/customer

95

92

8 So what?
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Conclusions our Study Supports

 Limited business activity (Phase 2) will allow us to flatten the curve and subsequently increase
the potential impact of the vaccine

« 80% school attendance, even in the presence of reduced business activity (Phase 2) can
significantly increase disease spread

« Reduced transmission among children does not offer significant protection if the schools open
at 80% capacity

« The hybrid learning scenario (two non-overlapping cohorts of 40% each) provides the most
balanced approach in terms of reducing risk, enabling in-person education, and increasing the
impact of the vaccine by flattening the curve

 The virtual learning scenario has the potential to avert the most number of cases but the impact
is limited when compared to the hybrid scenario

« Given the limited vaccine supply and amount it takes to develop protection, reopening schools
at 80% capacity 5-days per week can lead to secondary waves of infection

« School staff appears to have the highest risk of infection when compared to other industries due
to increased exposure to a non-vaccinated populatfion (K-12)

Los Alamos National Laboratory
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Impact of Vaccine & School Options (Phase 3)

Phase 3 New Mexico: Different School Reopening Scenarios with Vaccination VS. No Intervention (Baseline)

—— Baseline
14,000 1 0o Sehool So what?
—— Hybrid School The phase 3 baseline scenario
12,000 — Closed School corresponds to increased
business activity, 100% school
attendance, and vaccine
g 10,0001 distribution starting mid
§ December
:g 8,000
3 The Phase 3 scenarios lead to
% 6000 increased number of cases
4 when compared to Phase 2
E scenarios
4,000

The vaccine will have limited
2,0001 impact if schools reopen at

80% or 100% attendance
levels while in Phase 3

O_
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Date
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When Can We Reopen Schools at 80% Post Hybrid?

Phase 2 New Mexico: Hybrid School VS. Reopen School in March in Hybrid Mode

—— Hybrid School
—— Hybrid Mar80%

4,000 A

So what?

- Reopening schools (post

3,0001 hybrid learning) at 80%
capacity in March (Phase 2)
can lead to secondary waves
of infection

2,000 -

Given the limited vaccine
supply and the time it takes to
develop immunity, additional
restrictions will be needed to
reduce spread and increase
the impact of the vaccine
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1,000 -
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When Can We Reopen Schools at 80% Post Hybrid —

U.S. Overall Impacts?

Phase 2 United States: Closed School VS. Reopen School in Febuary with 80% School Attendance Phase 2 United States: Hybrid School VS. Reopen School in March in Hybrid Mode
—— Closed Feb80% 1,000,000 - —— Hybrid School
—— Closed School —— Hybrid Mar80%
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So What?

Secondary waves of infection are likely across the U.S. if the schools reopen too soon (before herd
immunity is achieved through vaccination)
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NM: Source of Infection for All Scenarios

Source of Infection
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U.S.: Source of Infection (Phase 3)

Phase 3 Source of Infection

100
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90 So what?
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U.S.: Impacts by Age for All Scenarios

Phase 2 US Cases Averted by Age Phase 3 US Cases Averted by Age
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NM: Phase 2 + Hybrid Learning + Vaccine
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Phase 2: U.S. and 12 States Level Impactis for

various scenarios

Representative States: Schools Stay Closed VS. Open under Phase 2
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Phase 2: NM Impacts by County

Phase 2 New Mexico: County Level Cumulative Cases per 100K
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Phase 3: NM Impacts by County

Phase 3 New Mexico: County Level Cumulative Cases per 100K
50,000 1 /
I So what?

45,0001 e - Fully reopening schools
and businesses in areas
40,000 1 l I with low incidence is likely
S ; Ibd l I l I to increase the risk of
§35s000“ I I ' - l I l COVID-19 spread
S 30,000 1 I l b I I I T e I 1 - I
g L — T [ o
g fid i - Ll - Phase 3 (increased
2 25.000- ™ ¢ ™ I M business activity) will lead
U T 1 1 L] L]
I I I I to higher impacts across
20,000 1 e . I I the region
QIR : I 1 1 )
15,000‘ ° ° oge
I I — Median Spatial variability based on
L | | LT | I local demographics, initial
2 § 82 E S S %25 2. 8% 82 % &85 g g 83 T ETLE E g 88 8 & iti -
EEEEEEEEREEEREEEERRLRNENERE RN e
§°C9¢CT2& ¢ £ 3% % c 5574 & &7 E trends (% of population
Qo a4 (2 °
J e previously exposed)
® Closed School ® Baseline e  Hybrid School
® Closed Apr80% ®  80% School

Los Alamos National Laboratory 12/21/20 | 31



U.S.: Cases per 100K for Phase 2/Hybrid/Vaccine
Reopening Schools in March at 80%

P2 _Hybrid _Tier 80%SA.Mar

Cumulative Cases per County per 100K




U.S.: Cases per 100K for Hybrid/Phase 2/Vaccine
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Initial Application of the National EpiCast Model with

Tract-level Resolution was to Pandemic Influenza

Mitigation strategies for pandemic influenza
in the United States m——

Timothy C. Germann**, Kai Kadau*, Ira M. Longini, Jr.*, and Catherine A. Macken*

*Los Alamos National Laboratory, Los Alamos, NM 87545; and *Program of Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center and

B = - of Sciences of Tni "
Department of Biostatistics, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98109 Proceedings of the National Academy of Sciences of the United States of America

Wwww.pnas.org
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ARTICLE INFO ABSTRACT

Keywords:

Pandemic influenza
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Stochastic individual-based model
EpiCast

We used individual-based computer simulation models at community, regional and national levels to evaluate
the likely impact of coordinated pre-emptive school dismissal policies during an influenza pandemic. Such
policies involve three key decisions: when, over what geographical scale, and how long to keep schools closed.
Our evaluation includes uncertainty and sensitivity analyses, as well as model output uncertainties arising from
variability in serial intervals and presumed modifications of social contacts during school dismissal periods.
During the period before vaccines become widely available, school dismissals are particularly effective in de-
laying the epidemic peak, typically by 4-6 days for each additional week of dismissal. Assuming the surveillance
is able to correctly and promptly diagnose at least 5-10% of symptomatic individuals within the jurisdiction,
dismissals at the city or county level yield the greatest reduction in disease incidence for a given dismissal
duration for all but the most severe pandemic scenarios considered here. Broader (multi-county) dismissals
should be considered for the most severe and fast-spreading (1918-like) pandemics, in which multi-month

closures may be necessary to delay the epidemic peak sufficiently to allow for vaccines to be implemented.

1. Introduction

Influenza pandemics occur when a novel influenza virus gains sus-
tained human-to-human transmission and spreads globally, resulting in
potentially high levels of morbidity and/or mortality. Following the
emergence of a novel pandemic strain, several months are typically
required to develop, produce, and distribute a well-matched pandemic
vaccine (Gerdil, 2003; Centers for Disease Control and Prevention,
2010; President’s Council of Advisors on Science and Technology,
2010). Moreover, the use of antiviral drugs for chemoprophylaxis may
be limited due to concerns regarding drug resistance and limited supply
during an evolving pandemic (Lipsitch et al., 2007; Centers for Disease
Control and Prevention, 2011). As a result, non-pharmaceutical inter-
ventions (NPIs) are essential, potentially providing time for pandemic
vaccines to be developed and distributed, decreasing the peak demand
for healthcare services prior to pandemic vaccine roll-out, and reducing
the overall morbidity and mortality caused by the novel virus. Among

* Corresponding author.
E-mail address: hgao@cdc.gov (H. Gao).

potential NPIs, school closure/dismissal has long been one of the first to
be implemented during previous pandemics (Markel et al., 2007a;
Cauchemez et al., 2009), given the major role that school-aged children
play in the transmission of influenza in the household (Longini et al.,
1982; Viboud et al., 2004) and community (Chao et al., 2010), likely
due to intense social contacts among children in schools (Mossong
et al., 2008).

In the absence of clear evidence for the effectiveness of school
closures on large geographic scales, it has been very difficult for public
officials to make policy recommendations and develop national gui-
dance. Mathematical and computational disease spread models offer
invaluable platforms for performing “what-if” studies to assess potential
future pandemic scenarios and intervention strategies, complementing
observational or field studies that are necessarily limited to historical
events and decisions (Germann et al., 2006; Halloran et al., 2008). In
particular, they enable us to model a variety of school dismissal stra-
tegies and assess their effectiveness in slowing the spread of a

1 present address: IBM Health Modeling and Analytics Melbourne Research Laboratory, Melbourne, Victoria 3006 Australia.

2 Present address: TRICARE/Defense Health Agency, Reston, VA 20190 USA.
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Table 1
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Summary of key EpiCast model parameters for this study (see Supporting Online Material and Germann et al (Germann et al., 2006) for further details).

Parameter Options Key attributes

Pandemic scenario® A(2009 like)

B1(1968 like)
B2(1957 like)
C(H5N1 like)

D(1918 like)

Serial interval® Short 1.98, 1.98, 1.61 days
Long 1.2, 1.9, 4.1 days
School dismissal trigger® 1% 100
5% 20
10% 10
20% 5
School dismissal duration 1, 2, 4, 8, and 12 weeks
School dismissal geographic scale Community
County
Multi-county
State
Child-related contact changes Worst-case
during dismissal
Best-case

18% (32%, 15%, 7%), 1.3
22% (39%, 18%, 8%), 1.5
28% (50%, 23%, 11%), 1.8
10% (18%, 8%, 4%), 1.2
30% (54%, 25%, 12%), 2.0

Overall and age-specific (child,
adult, elderlyh) attack rates and Ry

Mean latent, incubation, and infectious period
durations
Diagnosis ratio® (percentage of symptomatic individuals correctly identified) and
corresponding number of symptomatic schoolchildren in a community required to
trigger dismissal

and 16, 20, 24 weeks for scenario D
For regional model: Community or Regional

100% increase in child-related household contacts
30% reduction in child-related non-household contacts
No change in child-related household contacts

50% reduction in child-related non-household contacts

Pandemic scenarios are based on a two-dimensional framework recently developed by (Reed et al. (2013)).

Ages 0-18 years are considered children, 19-64 adult, and 65+ years elderly.

The serial interval, or generation time, is the interval between successive cases in a chain of transmission.

School dismissal is triggered when the first confirmed symptomatic school-age child is detected in a community. The diagnosis ratio is the percentage of

symptomatic individuals that are positively identified; for instance, with a 5% diagnosis ratio, the first confirmed case may not be identified until 20 children are

symptomatic.

hypothetical future influenza pandemic (Haber et al., 2007; Milne et al.,
2008; Halder et al., 2010; Lee et al., 2010; Halder et al., 2011; Brown
et al., 2011; Milne et al., 2013; Nishiura et al., 2014; Fung et al., 2015).
However, previous pre-pandemic policy recommendations used a
measure of pandemic severity that was based on disease severity
measures, such as case fatality ratio and excess death rate (Centers for
Disease Control and Prevention, 2007), while modeling studies pri-
marily considered the effectiveness of school dismissal strategies for
various disease transmissibility levels, usually represented by the basic
reproduction number R, (Germann et al., 2006; Halloran et al., 2008;
Harber et al., 2007; Milne et al., 2008; Halder et al., 2010; Lee et al.,
2010; Halder et al., 2011; Brown et al., 2011; Milne et al., 2013;
Nishiura et al., 2014; Fung et al., 2015). A recently developed two-
dimensional pandemic severity assessment framework considers both
transmissibility and clinical severity as two independent factors (Reed
et al., 2013). This framework provides the basis for the development of
national pre-pandemic NPI guidance, for which school closure is
thought to be one of the most effective early mitigation measures. The
purpose of the present study is to evaluate whether school dismissal
should be recommended and, if so, when such dismissals should be
initiated, how broadly (in geographic terms, e.g., community, county,
or state-wide dismissals), and how long they should last. As described in
the Methods, we utilize simulations at three different scales to answer
these questions in a computationally feasible manner. A single com-
munity model ("2000 people) is used for sensitivity studies, and a re-
gional model ("8.6 million people in the Chicago metropolitan area) to
address timing (“when” and “how long”) and local vs. regional dis-
missal policies. The insights gleaned from these smaller-scale simula-
tions are then used to design the final simulation suite, employing a
model of the continental United States ("300 million people).

2. Methods
2.1. Simulation platform

In the present work, we extend and apply the stochastic, individual-
based EpiCast (“Epidemiological Forecasting”) model (Germann et al.,

2006; Halloran et al., 2008) to evaluate a range of school dismissal
policy options for five potential influenza pandemic strains having
characteristics based upon both historical (1918, 1957, 1968, and
2009) and potential H5N1-like pandemics, spanning the four quadrants
(with independent severity and transmissibility axes) of the pandemic
severity assessment framework (Reed et al., 2013). Full details about
EpiCast are provided in the SI.

2.2. Model parameters and assumptions

For each of these five pandemic scenarios and three geographical
scales, four other parameters are varied (see Table 1) in order to span
their likely ranges and ascertain their impact on mitigation. First, we
consider two alternative disease natural histories (“Short” and “Long”),
with serial intervals (average time between successive cases) of “2.8 and
4 days, respectively. These two choices have been used in several pre-
vious modeling studies (Halloran et al., 2008), and almost exactly span
the 95% confidence interval of 2.9-4.3 days observed in a household
study during the 2007 interpandemic influenza season in Hong Kong
(Cowling et al., 2009)

Second, we considered different triggers for school dismissal, all
involving the diagnosis of some threshold number of symptomatic
school children within a community. Once that threshold is reached, all
schools within that community are closed, and possibly those in sur-
rounding communities, depending upon the specific policy. Since it will
be impossible to quickly identify and accurately diagnose all sympto-
matic children, the surveillance sensitivity is an important factor. In the
present study, no other actions (e.g., therapeutic antivirals, isolation, or
quarantine) other than self-isolation (staying home when sick, as spe-
cified in SI section 1 F) are taken following diagnosis. Consequently, the
diagnosis ratio (the percentage of newly symptomatic individuals cor-
rectly and promptly identified following illness onset) and the trigger
threshold (the number of diagnosed school children required to activate
a dismissal) can be coupled to provide a single independent parameter
for the trigger, the number of symptomatic (but not necessarily diag-
nosed) school children. For example, if the diagnosis of a single child is
sufficient to trigger intervention, then diagnosis ratios of 1%, 5%, 10%,
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and 20% require 100, 20, 10, and five symptomatic school children,
respectively, in a community before the first symptomatic child is di-
agnosed, triggering the intervention.

Third, the geographic scale of school dismissal can range from the
individual community (which may be considered as a very small “2000-
person school district), to single county, multi-county, or even poten-
tially state- or nation-wide closures in the most severe situation, as in
the 1918-like scenario D. With the regional model, we consider school
dismissal at either the individual community or region-wide levels, and
at the national scale consider four scales of dismissal: community,
county, adjoining county region, or (for the 1918-like scenario D only)
state-wide dismissals.

Finally, in the face of a limited amount of survey and field study
data on social contact behaviors in and out of school from the United
States (Mossong et al., 2008; Gog et al., 2014; Earn et al., 2012;
Copeland et al., 2013; Chowell et al., 2011; Heymann et al., 2004;
Markel et al., 2007; Eames et al., 2012), we utilize a range of assumed
social contact pattern changes during school dismissal that is consistent
with the available studies and span those used in previous modeling
work (Germann et al., 2006; Halloran et al., 2008; Haber et al., 2007;
Milne et al., 2008; Halder et al., 2010; Lee et al., 2010; Halder et al.,
2011; Brown et al., 2011; Milne et al., 2013; Nishiura et al., 2014; Fung
et al., 2015). Since these contact rates contribute to the infection
probability for each susceptible person, they have a strong influence on
overall disease transmission, and unrealistic assumptions (e.g., “no
contacts between children during school dismissal”) can lead to overly
optimistic expectations for the benefits of school dismissal. To provide
likely bounds on the effectiveness of school dismissal policies for each
combination of school dismissal policy and pandemic scenario, we
consider two assumptions, representing either a “worst-case” (with a
greater amount of contact during closure, in which household contacts
involving children are doubled, and child-related contacts outside the
home are reduced by only 30%) and a “best-case” (with no change in
household contacts and a 50% reduction in outside contacts) scenario.
In both cases, all schools, preschools, daycares, and playgroups within
the affected community (or communities) are closed during dismissal,
so no transmission occurs within these mixing groups. Social contact
surveys (Eames et al., 2012) and mathematical model-based analysis of
virological data (Earn et al., 2012) during the 2009 summer and fall
holiday breaks suggest that there is a reduction of at least 40-50% in
contact and transmission among school-age children during such reg-
ularly scheduled dismissals; pre-emptive coordinated school dismissals
undertaken as a countermeasure during an evolving pandemic would
likely lead to additional precautions, reducing contacts even further.

We also assume that a well-matched vaccine will be available 6
months after the first U.S. index case. The assumed vaccine efficacy for
susceptibility VEs = 0.70 (VEs = 0.50 for age 65 +) represents the re-
duced susceptibility to infection and influenza illness of vaccinated
individuals, while the vaccine efficacy for infectiousness VEi = 0.80
(for all age groups) represents the reduced infectiousness to others
(Longini et al., 2000). Full details about vaccine assumption are de-
scribed in the SI. To separate the effects of school dismissal alone from
that coupled with a vaccination campaign, we will measure cumulative
attack rates both before (on day 180) and after (on day 240) vaccine
introduction.

2.3. Sensitivity analysis

A model of a single community of 2000 persons is used to identify
the key model parameters and quantify their impact on the mitigation
of disease spread (Blower and Dowlatabadi, 1994). We consider six
contact settings: households, household clusters, neighborhoods, com-
munities, schools, and workplaces. Latin hypercube sampling is used to
sample the contact probability in each setting, then partial rank cor-
relation coefficients are calculated as the outcome measure for sensi-
tivity analysis. Full details are presented in the SI.
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2.4. Model parameter calibration

The model of a small community was also used to develop an initial
set of model parameters for each of the five pandemic scenarios under
consideration (Table 1). The specified age-specific attack-rate patterns,
basic reproduction number R, and case fatality ratios were fit by ad-
justing the baseline EpiCast model contact rates (Germann et al., 2006)
to give age-specific and overall attack rates within 1% of the specified
values. For instance, in order to increase the childhood attack rate, the
corresponding school contact rate is increased. Similarly, to increase
the working-age adult attack rate, the workplace contact rate is raised.

2.5. Scoping studies

The regional (Chicago-area) model was used for an earlier study
involving EpiCast and two other individual-based, stochastic simulation
models (Halloran et al., 2008). Here, we use it for scoping studies to
evaluate the impact of the trigger and duration of school dismissal,
which will then be used to down-select to a smaller number of scenarios
to be evaluated using the more computationally expensive national-
scale model. The baseline parameters for each pandemic scenario are
adjusted slightly from their single-community values (reflecting the
more dispersed and heterogeneous population structure of the larger-
scale model), giving the model parameters listed in Table S1 and
baseline epidemic curves shown in Fig. S2. School dismissal options are
then systematically studied by considering all possible combinations of
the model parameters listed in Table 1. With regard to the geographic
scale, this model considers either community-by-community or si-
multaneous region-wide school dismissals. Furthermore, for the most
severe and transmissible 1918-like scenario D, longer durations of
closure (e.g., 16-24 weeks) are also explored.

2.6. National-scale simulation studies

For simulations of pandemic spread across the continental United
States, the manner of introduction of a pandemic influenza strain must
be considered. In particular, a human-transmissible strain may emerge
either domestically or overseas, in both cases most likely in a rural area.
As discussed in the SI, the subsequent epidemic will slowly spread
through the more dispersed rural population before reaching a dense
urban population where it can thrive, and it is during this early, rural,
spread, whether in the U.S. or overseas, that early characterization and
vaccine development can begin. One plausible domestic emergence
scenario is modeled by the introduction of 10 infected individuals into
Sussex County, Delaware, a large poultry-farming region on the
Delaware-Maryland-Virginia (DelMarVa) peninsula. Previous studies
(Germann et al., 2006) have found that introduction via air travel into
major metropolitan areas, or point source introductions into large cities
(either New York or Los Angeles), result in nearly identical national-
level incidence rates, with only a difference in the details of the spa-
tiotemporal spread. Consequently, we assume an introduction via ar-
riving international air passengers (2 per 10,000) for this overseas
scenario, a rate comparable with that used for the regional model.

Given the greatly increased computational cost of the national-scale
model, the comprehensive set of regional model results is used to
identify the most useful set of larger-scale simulations. As the two
scenarios with the highest clinical severity and the least and most
transmissible spread, pandemic scenarios C and D are both included in
the national-scale study. School dismissal is unlikely to be invoked for
the low-transmissibility, low-severity scenario A, so it is not considered
further. While there are subtle differences in results for scenarios Bl
and B2, we focus on B2 due to its higher severity and transmissibility
than B1. We consider three geographic scales of school dismissal for
each of these scenarios: community, county, multi-county region (in-
cluding the affected county and all immediately adjacent counties), and
additionally a coordinated (simultaneous) state-wide dismissal for the
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worst-case scenario D.
3. Results
3.1. Single community model

By attributing each new infection to a single source based on re-
lative contributions of contacts to the overall transmission probability,
we find that household transmission dominates ("40%), followed by the
age-appropriate daytime mixing group (school or work) ("30%) and
non-specific contact settings (also “30%), both for the original contact
parameters and for the modified contact parameters calibrated for the
five pandemic scenarios (Fig. S3 in the Supplementary information
(SD). This is consistent with the pattern used in other modeling work,
with perhaps a slightly increased household transmission. In accord
with this finding, sensitivity analyses performed on the single-com-
munity model confirm that the assumed household, school, and work-
place contacts (in that order) have the greatest impact on the resulting
cumulative attack rate, with non-specific community transmission
(which contributes to roughly a quarter of all cases) following closely
behind. The relationship between these contact matrix elements and the
epidemic timing is even more interesting. The partial rank correlation
coefficient (PRCC) shown in Fig. S4, which measures the sensitivity of
output variables to inputs, indicates that school transmission has, by
far, the largest impact on the number of days from initial outbreak to
peak incidence (a PRCC of —0.55), followed by household transmission
(—0.27) (The negative values simply indicate that for increasing contact
rates, the time to peak incidence decreases.). Interestingly, the work-
place contact rate PRCC (+0.11) has the opposite (positive) sign, but its
small magnitude may indicate that this is merely a statistical fluke.

3.2. Regional model

The impacts of school dismissal policies for the regional model are
summarized in Table 2, which presents the cumulative attack rate
(averaged over five stochastic realizations) and its reduction from its
baseline value (without any school dismissal) under each simulation
scenario. The results in Table 2 are for a shorter serial interval and
“best-case” contact rates (i.e., the least plausible amount of person-to-
person contact) during school dismissal (see Methods); corresponding
tables for the longer serial interval and/or worst-case contact patterns
are provided in the SI, Tables S2-S4. From Table 2, if we compare
community-wide and region-wide school dismissals of the same dura-
tion, pandemic scenarios and diagnosis ratio, the reductions of overall
clinical attack rate for community-wide closures are usually higher than
for region-wide closures for pandemic scenarios A, B1, B2, and D (see
Methods for a description of pandemic scenarios). In pandemic scenario
C, with longer school dismissals (> 4 weeks), region-wide dismissals
most often have a greater attack rate reduction than the community-
wide closures. Similar trends are observed whether the cumulative in-
cidence is measured before (at day 180, Tables S5-S8) or after (at day
240, Tables 2 and S2-S4) the onset of an assumed vaccination cam-
paign, particularly for the more transmissible scenarios B2 and D.
Consequently, we will limit our subsequent discussion to the post-
vaccination results based on the full 240-day simulation.

Further insight is provided by the epidemic curves for different
dismissal scenarios, such as those shown in Fig. 1 for the region-wide
dismissal, shorter serial interval, worst-case contact patterns, and
trigger of 20 symptomatic children (i.e., dismissal upon the first diag-
nosed case for a 5% diagnosis ratio). Here we can see that the primary
benefit of dismissals are to delay the epidemic peak, by 5-6 days per
week of dismissal for most pandemic scenarios, until the peak is post-
poned long enough for vaccines to be introduced and reduce the spread.
These delays are comparable with the "5 days per week of dismissal
recently found with a compartmental model for more severe epidemics
(with a 30% baseline attack rate) (Fung et al., 2015). For the mildest
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pandemic scenario C, the spread is so slow and the peak so late that it is
only delayed by 3-4 days per week of dismissal.

3.3. National model

For national-scale simulations, different manners of introduction of
the pandemic influenza strain resulted in different disease spread dy-
namics. For instance, the emergence of a domestic strain from a rural
area in the U.S. would likely take longer to result in widespread
transmission than the importation of a novel virus from overseas which
was already spreading from human to human before arriving at an
urban area (where international airports are located) in the U.S. (see
Figs. S7 and S8 in the SI). In addition to this, our simulation indicated
that emergence of a domestic strain in a rural area had a finite prob-
ability of extinction, and its peak transmission may lag behind 1-3
months compared to that of a novel virus introduction into an urban
area. For these reasons, we focus hereinafter on the results from the
national-scale models that assume an overseas emergence of the novel
virus with entry into the United States via air travel.

National-scale model outcomes, in terms of (symptomatic) cases
averted for two pandemic scenarios (B2 and D) for different dismissal
triggers, durations, and geographic scales, are presented in Fig. 2. A
different view of the impacts of varying spatial extent of school dis-
missal is shown in Fig. 3 for pandemic scenarios B2 and D, with a 4-
week closure after 20 symptomatic children appear in a community
(i.e., dismissing schools upon the first detected child at a 5% diagnosis
ratio). Epidemic curves are compared in the top panels for the two
considered contact rate changes upon school dismissal. In the bottom
panels, we show the number of schools closed over time. (These results
are for the worst-case contact-rate assumption; those for the best-care
contact rates are shown in Fig. S6.) As shown in Figs. S9 and S10, the
reduced transmissibility of scenario C, combined with the slower spread
across the dispersed U.S. population, causes it to have not yet reached
its epidemic peak by the assumed availability date of an effective
vaccine, six months after the first introduction. As subsequent vacci-
nation slows and ultimately stamps out the outbreak, the effect of
vaccination dominates the impact of any school dismissal and precludes
any further consideration of this scenario for the national-scale model.

From Fig. 3, we observe that community-wide school dismissals
reduce the peak incidence without significantly delaying the time-to-
peak incidence. On the other hand, multi-county and state-wide school
dismissals have more impact on delaying the time-to-peak than redu-
cing the peak incidence. Furthermore, county-wide school dismissals
have a similar time-to-epidemic-peak as multi-county and state-wide
school dismissals, but with a lower peak incidence than either. These
results (Fig. 2) for the effectiveness of community-wide school-dis-
missal strategies are consistent with the results for the regional model
(see Table 2). In particular, for a low (but plausible) diagnosis ratio of
1%, waiting to close individual schools until even the first detected case
may never occur. Efficacy increases with both the diagnosis ratio and
duration, although a diminishing return is observed for longer dismissal
durations, in particular the extended 16- and 20-week durations for
scenario D. However, the chief advantage of the national-scale model is
that it allows us to explore varying geographic scales of school dis-
missal. We find that the optimal geographic scale of school dismissal
depends on the duration and trigger/diagnosis ratio (see Fig. 2). More
proactive dismissals (i.e., those over broader geographic regions) are
only advantageous if the closure is sufficiently long to enable vacci-
nation, which often means a month or longer dismissal. Additionally,
more proactive school dismissals over a larger geographic area (multi-
county, or state level) will be more appropriate (and effective, see
Fig. 2) for settings where influenza surveillance is less sensitive (i.e.,
where the diagnosis ratio is likely to be low).
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Fig. 1. Effect of school dismissal duration upon
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3.4. Observations

From these regional and national model results, several observa-
tions can be made. First, the main effect of school dismissals across
wider geographic scales is to slow the spread of the virus, as reflected
by delayed time-to-peak, which confers multiple benefits. One is to
delay and reduce peak demand for healthcare, which is particularly
important at the start of a pandemic when systems are not yet prepared
to deal with an ever-increasing patient load. An even greater benefit is
achieved if this delay extends sufficiently long for an effective vaccine
to be developed, produced, and distributed to the population (see
Fig. 3). Second, the effects of school closure are very sensitive to the
ability of the local surveillance system to detect influenza circulation
and, in turn, provide a “trigger” for closing schools. For a diagnosis
ratio as low as 1%, which might occur if laboratory confirmation is
required (Reed et al., 2009), dismissals may not be triggered in time
and, thus, will have no effect on morbidity (see Table 2). In contrast,
when surveillance systems are able to detect 5% or more influenza cases
in the community, school closures of any duration and on any scale
start reducing cumulative incidence, with the effect being particularly
prominent for closures lasting 8 weeks or longer (see Fig. 2).

Finally, school closures for shorter duration of closure (1-4 weeks)
generally result in a greater number of cases averted at the local
community level, compared to simultaneous school closures of the same
duration implemented over a larger geographic area (county, multi-
county, or state [see Fig. 2]). However, such simultaneous (co-
ordinated) school closures proactively implemented over a wider region
are usually superior in terms of number of cases averted if the closure is
sustained over a longer period of time (8 weeks or more [see Fig. 2]). In

v

addition, simultaneous (proactive) school dismissal policies more ef-
fectively delay the spread of the disease compared to the community-
wide school closures of the same duration, albeit at the greater cost to
society due to the larger number of schools that must remain closed
than if the closures were implemented on an individual community-by-
community basis (see bottom panels of Fig. 3). By primarily slowing,
rather than reducing, the disease spread, such closures are capable of
reducing the peak burden significantly if the delay extends into the time
window when vaccines become available. In contrast, individual school
dismissals do not have a substantial impact on when the peak burden is
reached, but if implemented promptly after the occurrence of a few
initial cases within a school or school district, they may help reduce its
magnitude and, thus, the transitory surge on the healthcare system (see
top panels of Fig. 3).

4. Discussion

The primary benefit of pre-emptive school dismissals in mitigating
the spread of a novel influenza virus is the delayed time-to-peak that is
seen in dismissals of any duration considered in our study, typically by
4-6 days for each week of dismissal. Delaying local outbreak peaks
helps to decompress the demand on the healthcare system during the
initial pandemic wave and, under certain circumstances, it may help
“buy time” to prepare and roll out a pandemic vaccine. That the main
effect of school dismissals is delaying the time-to-peak is fully con-
sistent with the nature of an intervention that does not provide specific
protection. Overall, longer pre-emptive school dismissals (=4 weeks)
implemented simultaneously on a wider geographic scale (e.g., county
level or wider) are most impactful in mitigating an influenza pandemic
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in its early stages, while awaiting the production and distribution of a
pandemic vaccine. However, as Fig. 1 indicates, for highly transmissible
strains, it may be difficult to close schools long enough to delay the
epidemic peak until vaccines become available. Thus, efforts to increase
the speed of vaccine production and distribution are essential to ensure
that the time bought by school dismissal yields the optimal benefit
(Biggerstaff et al., 2015).

In addition to delaying the time-to-peak, school dismissals of suffi-
cient duration implemented pre-emptively on a wide-enough geo-
graphic scale may also reduce the cumulative attack rate. Our results
suggest that shorter precisely targeted dismissals (1-4 weeks) im-
plemented on an individual community-by-community basis following

1wk 2wks 4wks

8 wks 12 wks 16 wks 20 wks

detection of initial cases among students at these schools appear to be
superior to dismissals of the same duration implemented in a co-
ordinated county-wide, multi-county, or state-wide manner. However,
such dismissals may not be feasible in practice, as precise targeting
requires prompt laboratory confirmation of initial cases in each and
every community, coupled with quick dismissal of an affected school
before virus spread occurs within the school and between the school
and the surrounding community. For longer (multi-month) dismissals,
we find that a greater reduction in cases is achieved by coordinated
larger-scale dismissals (county-level or wider), being proactive rather
than waiting until cases are detected in each individual community.
Therefore, for the most severe pandemic scenarios, we believe that the
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optimal geographic unit for implementation of pre-emptive school
closures as a pandemic countermeasure will be county-wide or beyond.

For less transmissible strains causing severe disease (e.g., a potential
H5N1-like scenario) represented by the scenario C in our study, the
effect of school dismissal on cumulative disease incidence is quite
pronounced, even for shorter dismissals implemented on a narrower
geographic scale. The already-low transmissibility (low Ry) in such a
scenario provides an opportunity to achieve local extinction by strate-
gically targeted and timed school closure following the initial local
introduction even without vaccination. In contrast, for the most trans-
missible strains associated with a high clinical disease severity con-
sidered in our study (i.e., scenario D comparable to 1918), a significant
reduction in cumulative disease incidence by school closure alone may
only be possible when schools are out of session for 16 weeks or longer,
at a county-wide or wider geographic scale. It should be noted, how-
ever, that depending on the timing of the initial pandemic waves, the
effect of a long continuous school dismissal (16 + weeks) may be rea-
lized through a combination of planned school holidays and an addi-
tional dismissal (or delayed start of a semester) in response to the
pandemic.

These results highlight an important practical issue, namely that the
effectiveness of school dismissals is highly dependent on the local sur-
veillance systems’ ability to quickly detect virus transmission in com-
munities and, thus, implement (or “trigger”) the intervention in a
timely fashion. Delayed detection, associated with a less-sensitive sur-
veillance method (e.g., by waiting for laboratory confirmation) results
in a delayed implementation of the intervention and, thus, a diminished
effect with regard to slowing down the transmission. For a low diag-
nosis ratio of 1%, delaying the closure of individual schools (or com-
munities) until a child there is confirmed is a threshold that may never
be reached. (For a 2000-person community in which 22% of the po-
pulation is school-aged, there are only 440 school children; it is unlikely
that 100 of them will be ill at the same time.) In these cases, more
sensitive triggers or surveillance approaches may be needed to ensure
school outbreaks are identified promptly. Interestingly, the opposite
behavior is observed for simultaneous school dismissal. In that case, the
greater risk is closing (and then reopening) schools too quickly before
the epidemic reaches its peak. For a low diagnosis ratio, this is the only
choice, and may be the most realistic in practice: if a school has so
many affected students that it is forced to close, neighboring schools
will benefit by proactively dismissing. In a way, the original school

Days since index case

(which is unlikely to benefit from closing, since it may be too late) will
serve as a sentinel event, signaling the impending risk of severity to
surrounding communities. Given the extreme sensitivity of the effects of
school dismissals to early detection of initial cases, an aggressive sur-
veillance system, coupled with intense pre-pandemic planning for rapid
implementation of community-based interventions such as school dis-
missals, is needed in all settings. This may be particularly important in
dense urban settings around major international hubs, where in-
troductions of novel influenza virus strains are most probable and
where an extremely high population density may facilitate transmission
of strains that may be less capable of circulating in more sparsely po-
pulated areas.

To our knowledge, this is the first study that systematically explored
potential effects of school closures implemented on different geographic
scales relevant for the U.S. (corresponding to local, county, regional/
state, and national governmental authorities) and in different pandemic
severity scenarios.

Our findings are consistent with previously published studies con-
sidering school closures as the only intervention in response to an
evolving pandemic. In particular, prior observational and modeling
studies suggested that schools are the key community setting for pan-
demic influenza transmission (Chao et al., 2010; Gog et al., 2014).
School closures have been found to be effective in slowing down in-
fluenza transmission, whether implemented as a mitigation strategy or
due to other reasons (e.g., regular school breaks, teacher’s strike, etc.)
(Earn et al., 2012; Copeland et al., 2013; Chowell et al., 2011; Heymann
et al., 2004; Markel et al., 2007). In addition, other modeling studies
have explored school closure as a mitigation strategy (Halloran et al.,
2008; Haber et al., 2007; Milne et al., 2008; Halder et al., 2010; Lee
et al., 2010; Halder et al., 2011; Brown et al., 2011; Milne et al., 2013;
Fumanelli et al., 2016; De LuCa et al., 2018). However, to our knowl-
edge, ours is the most comprehensive modeling study to evaluate the
effectiveness of different school-closure strategies — including the tra-
deoffs between local, regional, and national dismissals — in mitigating
influenza in the United States during an evolving pandemic. Model
adjustments and validation were undertaken to address the research
question at hand using the best currently available empirical and ob-
servational data for model parameterization, and sensitivity analyses
were used to test the robustness of key findings.

As has been comprehensively reviewed by (Riley 2007) and Car-
rasco et al (Carrasco et al., 2013), the great flexibility of such models is
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also their Achilles heel, as model developers, users, and consumers
often construct models and parameters in data-poor (or data-free) en-
vironments. Intentionally (as is most always the case) or not, these
decisions can lead to greater confidence in model predictions than may
be warranted, given their typically tenuous tie to observed truth.
However, although quantitative model predictions should generally be
viewed with a healthy appreciation for their limitations, in many cases,
qualitative trends have been proven to be reliable and useful in pre-
pandemic planning efforts (Centers for Disease Control and Prevention,
2007). We have endeavored to consider and address the key limitations
that are always present in mathematical modeling studies. In the pre-
sent case, the greatest uncertainty concerns how contact rates (within
different mixing groups and ages) might change during the disruption
accompanying an unplanned school dismissal. These will presumably
vary with time (as a so-called “fear-based social distancing” gradually
decays towards normal contact rate patterns), and severity (e.g., the
greater case fatality ratio of pandemic scenarios C and D are more likely
to lead to a greater acceptance of, and compliance with, recommended
social distancing measures. Currently, to our knowledge, there are no
empirical data to inform how contact patterns may change during a
prolonged closure; without such data, this limitation cannot be con-
fidently addressed. On the disease side, there remains a great deal of
variability and uncertainty about the natural history of influenza, most
notably its serial interval (we considered two possibilities which
bracket the likely range) and the role of asymptomatic individuals in
transmission (we have assumed 50% of all cases are asymptomatic;
previous studies assume either 30% or 50%). As mentioned previously,
the triggering of any mitigation measures is dependent upon a timely
detection, while realistic diagnosis ratios for pandemic planning pur-
poses remain uncertain (Biggerstaff et al., 2012).

In addition to testing the effects of school closures with regard to
timing, duration, and geographic scale of their implementation during
an evolving pandemic prior to vaccine rollout, we have performed
several analyses to test the robustness of our key findings. A sensitivity
and uncertainty analysis demonstrates that schools are the key com-
munity setting for influenza transmission, apart from households.
Hence, reducing school transmission provides the greatest lever for
slowing the disease spread before vaccination. While such analyses
have rarely been performed for large, complex simulation models,
many further questions remain for future research. For example, it
would be important to explore to what extent the networking of mul-
tiple communities, as in our regional and national models, affects these
parameter sensitivities and variability of outcomes through nonlinear
effects. Since it is impossible to predict the precise characteristics of the
next pandemic influenza strain, and the efficacy of potential pharma-
ceutical and non-pharmaceutical countermeasures, the results pre-
sented here are somewhat qualitative in nature. However, during the
next pandemic, the real-time estimation of these key unknowns (a
challenging task in itself) will constrain models such as those presented
here, thus yielding quantitative, testable predictions.

Finally, we note that the present study also identifies several areas in
which further research should be carried out. As is often the case with
modeling studies, new empirical data are essential to further constrain
and corroborate the models, particularly with regard to contact rates
during times of social disruption, including school closures. We recognize
that school dismissal incurs substantial economic and societal costs (in
addition to removing a convenient location for implementing a child-
hood vaccination campaign), and a more complete economic analysis
should be performed before recommending any specific policies. Several
economic analyses of different policy options have been reported
(Cauchemez et al., 2009; Halder et al., 2011; Brown et al., 2011; Milne
et al., 2013; Nishiura et al., 2014), but a more comprehensive economic
analysis of school closures as a pandemic mitigation strategy, both on its
own and in conjunction with pandemic vaccination, would be helpful, as
well as further consideration of societal options that may mitigate the
secondary impact of school closures.
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